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Figure S1: Plasmids used in this study.
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Figure S2: A Hill function accurately fits the relationship between corrected absorbance and
CFU/ml in LBM medium. A log-linear fit of the form log10(A600 − cl3) = cl1 log10(r) + cl2 is shown
for comparison. The small standard deviations of the experimental data at high absorbances make
this log-linear fit less predictive than the Hill function.
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Figure S3: Periodic dilution results for network architecture c, pluxRp-101 and pPSSUB-102. This
figure shows the corrected absorbance and fluorescence dynamics over the duration of the periodic
dilution experiment. Ao

600 is the initial absorbance of the overnight culture used to start the
periodic dilution experiment. The system exhibited the same fluorescence trend regardless of the
initial condition: an initial burst followed by a gradual decay. Each plot uses the same shading to
highlight differences in the measured fluorescence values.
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Figure S4: Periodic dilution results for network architecture b, pluxG-102C and pPSSUB-102.
This figure shows the corrected absorbance and fluorescence dynamics over the duration of the
periodic dilution experiment. Ao

600 is the initial absorbance of the overnight culture used to start
the periodic dilution experiment. +10 µM 3OC6HSL indicates that the overnight culture was
induced with 10 µM 3OC6HSL. Each plot uses the same shading to highlight differences in the
measured fluorescence values.

5



(a) Day 1 (b) Day 2

101

102

103

104

105

0.01 0.1 1

C
or

re
ct

ed
F
lu

or
./

A
6
0
0

(A
.U

.)

Corrected A600

low

high

+3OC6HSL

101

102

103

104

105

0.01 0.1 1

C
or

re
ct

ed
F
lu

or
./

A
6
0
0

(A
.U

.)

Corrected A600

low

high

+3OC6HSL

(c) Day 3 (d) Average Results
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Figure S5: Individual periodic dilution experiments for testing of architecture b (pluxG-102C
and pPSSUB-102) for bi-stability. Here, initial cultures were either grown to a low absorbance
(A600 < 0.2), grown to a high absorbance (A600 > 0.7), or dosed with 10 µM 3OC6HSL. In each
experiment, these different initial conditions led to very similar steady-state profiles. The variation
in the steady-state data from day to day, plots (a-c), led to the variability in the average results,
plot (d).
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(a) - Figure 3 and Figure 5 (b) - Figure 3: pluxRp-103E and pPSSUB-102
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(c) - Figure 7: pluxG-102C and pPSSUB-102
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Figure S6: Cell viability for the periodic dilution experiments as determined by serial dilution and
plating. Each plot corresponds to a periodic dilution experiment in the main text as noted.
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Primer Sequence
Constructed

Plasmid

5-G-NotI aagcgcggccgcctcgtaagccatttccgctcg
pluxG-102,
pluxG-102C

3-XhoI-luxR gaactctcgaggatcccgtacttaatttttaaagtatgg pluxG-102
5-G2-lux cttgcgacaaacaatattaaagaggagaaaggtacccatg pluxG-102
3-G2-lux ctcctctttaatattgtttgtcgcaagttttgcgtg pluxG-102
3-KpnI-GC ctatgaggtaccggtctgtttccttacctattgtttgtcgcaagttttg pluxG-102C
5-AatII-luxI ctagaggacgtcttaatttaagactgcttttttaaactg pluxG-103
5-Rseq ttcatacggctaacaatggcttcg pluxG-103
5-SalI-plux gaactgtcgacccctcttacgtgccgatcaacgtctc pluxRp-101
3-pluxC catttatgtttttcatgcttaatttctcctcttttatcaccg pluxRp-101
5-luxRC gagaaattaagcatgaaaaacataaatgccgacgacac pluxRp-101
5-seq catagccgaatagcctctccac pluxRp-101

5-Rp-SalI agcaatcacctatgaactgtcg
pluxRp-103,
pluxRp-103E

3-HindIII-
luxRa

gcttctacaagctttaattttattaattattctgtatg pluxRp-103

5-Rp3 gataaaagaggagaaggtaccatgaaaaacataaatg pluxRp-103
3-Rp3 catttatgtttttcatggtaccttctcctcttttatc pluxRp-103
3-KpnI-RpE ctatgaggtaccaaccggtttcctcaccgccagaggtattcgac pluxRp-103E

Table S1: Primers used in this study.
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2R + 2A
K1−⇀↽− R∗ r1

R∗ + P0
K2−⇀↽− P1 r2

Transcription
Factor Binding

R,A,G
k5, k6, k7−→ degraded r5, r6, r7

Degradation

C k9−→ 2C r9 = k9c
(

1− c
cmax

) Cell growth
(logistic)

P0
k4−→ P0 + naA + ngG r4

P1
k3−→ P1 + naA + ngG r3

Q0
k8−→ Q0 + R r8

Transcription &
Translation

Table S2: Kinetic mechanism used to model the behaviors of network architecture b. G, C, and Q0

refer to green fluorescent protein, bacterial cells, and the DNA encoding constitutive expression,
respectively.

S1 Derivation of the Quorum-Sensing Mathematical Model

In this section, we derive the mass balances used to construct the quorum-sensing mathematical
model. We consider only architecture b, in which luxR is constitutively expressed and luxI and
gfplva are under the control of the p(luxI) promoter. The other two configurations can be similarly
derived.

Given the kinetic mechanism of Table S2, we can write mass balances for each of the species of
interest

d(cAV )
dt

= (−2r1 + na(r3 + r4))Vc − r6V (1a)

d(cRVc)
dt

= (−2r1 + r8 − r5)Vc (1b)

d(cR∗Vc)
dt

= (r1 − r2)Vc (1c)

dcP0

dt
= −r2 (1d)

dcP1

dt
= r2 (1e)

d(cGVc)
dt

= (nG(r3 + r4)− r7)Vc (1f)

d(ccV )
dt

= r9V (1g)

in which

• V = reactor volume,
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Parameter Initial Value Reference Revised Value
K1 10. nM−1 50. nM−1

K2 0.01 nM−1 [8]
k3 20. hr−1 [4]
k4 4.05× 10−6 hr−1 [4] 0.1 hr−1

k5 1.386 hr−1 [3]
k6 0.0289 hr−1 [5]
k7 1.0397 hr−1 [1]
k8 0.4819 hr−1 0.0723 hr−1

nA 1.× 103

nG 1.
cPT

41.5 nM
cQT

41.5 nM
V 5. ml
Vone 10.−15 l [2]
kG 1. nM−1 50. nM−1

fbgd 0 −150

Table S3: Parameters used for simulation of the quorum-sensing models. Initial values for parame-
ters were obtained from the literature when possible. The revised values reflect adjustments made
to parameters to fit the experimental results for the shuffled architectures.

• Vone = volume of one cell,

• Vc = total intracellular volume = ccV Vone, and

• cc,max = max cell density.

Here, we assume that cell replication maintains a constant plasmid concentration. We assume that
fluorescence (f) is proportional to the GFPLVA concentration (cG) plus a scaling factor fbgd, i.e.,

f = kGcG + fbgd (2)

A list of parameters used in this paper are presented in Table S3. Parameters such as k9 that do
not affect the steady state are not reported in this table.

Assuming that reactions one and two (r1 and r2) are at equilibrium, we obtain the following
reduced model:

d(cAV )
dt

+ 2
(
d(cR∗Vc)

dt
+ Vc

dcP1

dt

)
= (na(r3 + r4))Vc − r6V (3a)

d(cRVc)
dt

+ 2
(
d(cR∗Vc)

dt
+ Vc

dcP1

dt

)
= (r8 − r5)Vc (3b)

K1 =
cR∗

cAcR
(3c)

K2 =
cP1

cP0cR∗
(3d)

cPT
= cP0 + cP1 (3e)

d(cGVc)
dt

= (nG(r3 + r4)− r7)Vc (3f)

d(ccV )
dt

= r9V (3g)
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in which cPT
is the total plasmid concentration per cell.

By setting the derivatives of equation (3), one can solve for the steady states of the system to
yield:

0 = −k6αc
2
A + (k3αβ − k6) cA + k4β (4a)

α = K1K2 (4b)
β = naVccc,maxcPT

(4c)

cG =
ngcPT

k7

(k4 +K1K2k3cAcR)
(1 +K1K2cAcR)

(4d)

Equation (4) indicates that the steady-state concentration of the 3OC6HSL signalling molecule is
a quadratic function.

In a similar fashion, one can solve for the steady states of network architecture a

cA =
naVck8

k6
cc,max (5a)

cR =
k8

k5
(5b)

cPT
= cP0 + cP1 (5c)

cG =
ngcPT

k7

(k4 +K1K2k3cAcR)
(1 +K1K2cAcR)

(5d)

and network architecture c

0 = −k6αc
3
A + k3αβc

2
A − k6cA + k4β (6a)

α = K1K2 (6b)
β = naVccc,maxcPT

(6c)

cG =
ngcPT

k7

(k4 +K1K2k3cAcR)
(1 +K1K2cAcR)

(6d)

Equations (5) and (6) indicate that the steady-state concentration of the 3OC6HSL signalling
molecule for network architectures a and c are linear and cubic functions, respectively.

S2 Effect of Positive Feedback on the p(luxR) Promoter

Previous works indicate that luxR is capable of positively stimulating transcription from the p(luxR)
promoter to a small degree [6, 7], thereby resulting in positive feedback on the p(luxR) promoter. In
contrast, we have assumed that the p(luxR) promoter is constitutive. In this section, we numerically
explore the effects of this positive feedback.

The experimental results of Sitnikov et al. [7] suggest that the positive feedback from the
p(luxR) promoter (1.9-fold stimulation) is roughly twenty times less than that from the p(luxI)
promoter (37-fold stimulation). Consequently, we explore increasing the positive feedback from
the p(luxR) promoter on network architectures a and b. To do so, we define the amplification
factor of promoter j (αj) as the fold increase in the expression levels due to positive feedback.
We consider manipulating the amplification factor for the p(luxR) promoter, αp(luxR) = k′3/k

′
4, by

altering k′4 while leaving k′3 at a constant value. Parameter values are the same as the revised
values in Table S3, noting that k′3 = k8 and k′4 is variable.
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Figure S7: Effect of increasing the amplification factor αp(luxR) for the p(luxR) promoter for net-
work architectures a and b. Plot (a): increasing αp(luxR) for network architecture a. Plot (b):
increasing αp(luxR) for network architecture b. Plot (c): comparing all three network architectures
for αp(luxR) = 3. Plot (d): comparing all three network architectures for αp(luxR) = 10.
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Transcription Factor Binding

2R + 2A
K1−⇀↽− R∗

R∗ + P0

K2−⇀↽− P1

Degradation

R,A,G
k5, k6, k7−→ degraded

Cell growth (logistic)

C k9−→ 2C

r9 = k9c
(

1− c
cmax

)
Architecture a

P0
k4−→ P0 + ngG

P1
k3−→ P1 + ngG

P0
k

′
4−→ P0 + R + naA

P1
k

′
3−→ P1 + R + naA

Architecture b

P0
k4−→ P0 + naA + ngG p(luxI)

P1
k3−→ P1 + naA + ngG p(luxI)

P0
k

′
4−→ P0 + R p(luxR)

P1
k

′
3−→ P1 + R p(luxR)

Transcription &
Translation

Table S4: Kinetic mechanisms used to model the behaviors of architectures a and b assuming that
the p(luxR) promoter exhibits positive feedback. Positive feedback from the p(luxI) promoter is
denoted by the k3 and k4 rate constants, while positive feedback from the p(luxR) promoter is
denoted by the k′3 and k′4 rate constants.

Because the p(luxI) promoter has an amplification factor in the model of αp(luxI) = k3/k4 = 200,
we restrict our attention to amplification factors for the p(luxR) promoter of 0 ≤ αp(luxR) ≤ 10 to
account for the experimental observations of Sitnikov et al.[7]. In Figure S7 (a) and (b), we see that
the amplification from the p(luxR) promoter increases the sharpness of the steady-state quorum-
sensing response for both network architectures a and b. Additionally, these figures demonstrate
that these values of αp(luxR) maintain the graded and threshold responses of network architectures
a and b, respectively. Figure S7 (c-d) compares the steady-state quorum-sensing responses of all
three network architectures for the same value of αp(luxR). These two figures demonstrate that
increasing the number of lux regulatory elements under control of the p(luxI) promoter increases
the sharpness of the response and reduces the location of the induction threshold for the given set
of parameters. Such phenomena result because the positive feedback from the p(luxI) promoter is
significantly greater than that from the p(luxR) promoter.

S3 Effect of Prolonged Quorum-Sensing Induction on Architec-
ture c

Prolonged maximal induction of the quorum-sensing circuit negatively impacts cellular function
for the architecture c configuration of pluxRp-101 and pPSSUB-102. As seen in Figure S3, the
dynamic fluorescence readings exhibit a weak maximum in intensity, then begin to slowly decrease
in value. Determination of cell viability by serial dilution and plating confirms the negative impact
on cellular function: Figure S6 (a) demonstrates that the number of viable cells for pluxRp-101 and
pPSSUB-102 are consistently lower than those for architectures a and b. Additionally, the plated
cells for pluxRp-101 and pPSSUB-102 were consistently smaller than those for architectures a and b
(data not shown). Interestingly, pluxRp-103E and pPSSUB-102 only displayed similar effects when
exposed to a 3OC6HSL concentration of 1.0 µM (or greater than 100 nM) as shown in Figures S8
and S9. Since over-expression of LuxR, LuxI, and GFPLVA from p(luxI) causes such limitations
on growth, there is a strong selective pressure to down-regulate the quorum-sensing system. We
speculate that the response to this pressure leads to the observed decreases in fluorescence.
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Figure S8: Steady states of pluxRp-103E and pPSSUB-102 as a function of 3OC6HSL induction.
The result for the experiment induced at 1.µM 3OC6HSL does not lead to a steady state.
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Figure S9: Periodic dilution results for pluxRp-103E and pPSSUB-102 as a function of 3OC6HSL
induction. This figure shows the absorbance and fluorescence dynamics over the duration of the
periodic dilution experiment. Induction with a 3OC6HSL concentration of 100 nM or lower leads to
a stable steady state. Induction with a 3OC6HSL concentration of 1 µM does not achieve a steady
state in the duration of the experiment. Each plot uses the same shading to highlight differences
in the measured fluorescence values.
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