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Abstract

We investigate how a protein’s structure influences the rate at which its sequence

evolves. Our basic hypothesis is that proteins with highly designable structures (struc-

tures that are encoded by many sequences) will evolve more rapidly. Recent theoretical

advances argue that structures with a higher density of inter-residue contacts are more

designable, and we show that high contact density is correlated with an increased rate

of sequence evolution in yeast. In addition, we investigate the correlations between the

rate of sequence evolution and several other structural descriptors, carefully controlling

for the strong effect of expression level on evolutionary rate. Overall, we find that the

structural descriptors that we consider appear to explain roughly 10% of the variation

in rates of protein evolution in yeast. We also show that despite the well-known trend

for buried residues to be more conserved, proteins with a higher fraction of buried

residues nonetheless tend to evolve their sequences more rapidly. We suggest that this

effect is due to the increased designability of structures with more buried residues.

Our results provide evidence that protein structure plays an important role in shap-

ing the rate of sequence evolution, and provides evidence to support recent theoretical

advances linking structural designability to contact density.

Introduction

Protein sequences evolve largely through the gradual accumulation of amino acid substitu-

tions, and the extent of sequence divergence is quantified by the number of non-synonymous

substitutions per site, dN . Over forty years ago, Zuckerkandl and Pauling (1965) observed

that dN for homologous proteins is proportional to the time since divergence, indicating

that dN measures a roughly constant average rate of fixed amino acid substitutions. How-

ever, it has also long been clear that different proteins accumulate substitutions at markedly

different rates: Zuckerkandl and Pauling (1965) remarked how the large values of dN for

hemoglobin were “spectacularly at variance” with the small values of dN for cytochrome c.

The availability of full genome sequences now allows for much more extensive comparisons

of rates of protein sequence evolution, and such analyses have confirmed the widely differing

rates noted by Zuckerkandl and Pauling (1965). For example, dN varies approximately a

thousandfold between the fastest and slowest evolving proteins in yeast (Drummond et al.

2005).

Zuckerkandl and Pauling (1965), and subsequently Ohta and Kimura (1971) and others

(King and Jukes 1969), argued that variation in dN was due to differences in the selective
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constraints on proteins’ sequences. The basic argument is that most sequence divergence is

due to the fixation of mutations with little or no effect on a protein’s function, and so the rate

at which substitutions accumulate is proportional to the average fraction of mutations that

are effectively neutral (Ohta and Kimura 1971; Brookfield 2000). This argument has now

gained widespread acceptance, and numerous studies have used high-throughput genomic

data to attempt to pinpoint the biological constraints that underlie the different rates of

sequence evolution. Numerous properties have been found to correlate with a protein’s

dN , including the dispensability or essentiality of its encoding gene (Hirsh and Fraser 2001;

Jordan et al. 2002; Zhang and He 2005; Wall et al. 2005), the number of other proteins with

which it interacts (Fraser et al. 2002; Lemos et al. 2005), its length (Marais and Duret 2001;

Lemos et al. 2005), its centrality in the protein interaction network (Hahn and Kern 2005),

and its expression level (Pal, Papp, and Hurst 2001; Drummond et al. 2005; Drummond,

Raval, and Wilke 2006). However, a casual analysis of these correlations is complicated by the

fact that most of these biological properties are also correlated with each other (Drummond,

Raval, and Wilke 2006). At this point, the only clear conclusions are that by far the most

dominant trend is for highly expressed proteins to evolve slowly (Pal, Papp, and Hurst 2001;

Drummond et al. 2005; Drummond, Raval, and Wilke 2006), and that the other correlations

are either much weaker or potentially due to confounding factors (Hurst and Smith 1999;

Pal, Papp, and Hurst 2003; Bloom and Adami 2003; Jordan, Wolf, and Koonin 2003; Hahn,

Conant, and Wanger 2004; Agrafioti et al. 2005; Drummond, Raval, and Wilke 2006).

The fact that expression level correlates with dN much more strongly than properties

reflecting a protein’s biological role is consistent with protein mutagenesis experiments show-

ing that deleterious mutations usually act by hindering the formation of a properly folded

protein rather than specifically altering a protein’s function (Shortle and Lin 1985; Pakula,

Young, and Sauer 1986; Loeb et al. 1989; Bloom et al. 2005, 2006). Therefore, dN should

be largely determined by the fraction of mutations that prevent adequate protein expression

and folding. Highly expressed proteins are under an increased requirement for fidelity in

expression and folding due to the costs of misfolded proteins, meaning they have a smaller

fraction of effectively neutral mutations and so evolve more slowly (Drummond et al. 2005).

A protein’s biophysical properties can also influence the fraction of mutations that allow for

adequate expression and folding — for example, protein mutagenesis experiments have shown

that increasing a protein’s thermodynamic stability dramatically increases its tolerance to

mutations (Bloom et al. 2005, 2006). Another factor that has received little consideration

with respect to its effect on dN , but which may significantly affect a protein’s mutational
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tolerance, are the characteristics of the native structure itself.

The relationship between a protein’s native structure and its mutational tolerance has

been extensively studied in the context of protein folding and design. These studies typically

attempt to characterize a structure’s designability, defined as the total number of amino acid

sequences that fold into that structure (Li et al. 1996; Kussell 2005). Because more designable

structures are encoded by more sequences, proteins that fold into highly designable structures

tend to be more tolerant to mutations, and thus should evolve their sequences more rapidly

(Fig. 1). Most studies of protein designability have utilized simple computational models in

which designability can be directly estimated by an extensive or exhaustive enumeration of

different sequences (Li et al. 1996; Govindarajan and Goldstein 1996, 1997; Tiana, Broglia,

and Shakhnovich 2000; Irbäck and Troein 2002; Miller et al. 2002; Chan and Bornberg-Bauer

2002; Wingreen, Li, and Tang 2004; Zhang, Sun, and Zou 2005; Wroe, Bornberg-Bauer, and

Chan 2005). The main conclusion of these model protein simulations is that designability

varies widely among structures; however, the simplicity of the models makes it difficult to

extrapolate any quantitative measures of designability to real proteins. At the other end

of the computational spectrum, a variety of studies have used state-of-the-art atomistic

simulations to attempt the estimate the designabilities of real proteins (Zou and Saven 2000;

Kono and Saven 2001; Voigt et al. 2001; Koehl and Levitt 2002; Larson et al. 2002). But

these atomistic simulations are computationally expensive, and their accuracy is not known

since there are no experimental measurements of protein designability with which they can

be compared. Recently, England and Shakhnovich (2003) have proposed a general theory

that relates designability to the pattern of contacts between residues in the native structure.

Their approach is based on the argument of Wolynes (1996) and Shakhnovich (1998) that

a structure’s designability can be estimated as the number of sequences that fold into that

structure with an energy below some threshold. By assuming that the energy of a structure

is due to pairwise interactions between residues, England and Shakhnovich (2003) show that

the designability D is given by a series in traces of powers of the structure’s contact matrix

C,

D =
∞∑

n=2

(Tr Cn) an. (1)

This theory has been verified with simulations on simple model proteins (England and

Shakhnovich 2003; England, Shakhnovich, and Shakhnovich 2003; Tiana et al. 2004), but

unlike earlier simulations it has a theoretical basis and so can in principle be applied broadly.

However, the coefficients an in Eq. 1 cannot be calculated, so the designability can be esti-

mated by truncating the series after the first term. (An alternative method of estimating the
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series in Eq. 1 as the maximum eigenvalue of the contact matrix gives comparable results,

as discussed below.) The first term of Eq. 1 is just equal to the contact density (the average

number of contacts per residue) (England and Shakhnovich 2003; England, Shakhnovich,

and Shakhnovich 2003), and so this truncation recovers the predictions of Wolynes (1996)

and Shakhnovich (1998) that designability is approximated by contact density.

Here we use this predicted relationship between contact density and designability as the

basis for exploring the contribution of protein structure to evolutionary rate in yeast. While

numerous earlier studies have shown that the conservation of residues at individual sites

is influenced by structural characteristics such as secondary structure or solvent exposure

(Overington et al. 1992; Koshi and Goldstein 1995; Thorne, Goldman, and Jones 1996; Gold-

man, Thorne, and Jones 1998; Mirny and Shakhnovich 1999; Bustamante, Townsend, and

Hartl 2000; Dean et al. 2002; Marsh and Griffiths 2005; Dokholyan and Shakhnovich 2001),

our work looks at how a protein’s structure affects its global rate of sequence evolution. We

examine the correlation of dN with contact density and several other structural descriptors

(fraction of buried residues, secondary structure composition, length, and fold classification),

while statistically controlling for the effect of expression level. Our work shows that dN is

influenced by protein structure in a way that suggests that proteins with more designable

structures evolve their sequences more rapidly.

Materials and methods

All 33,449 protein structures present in the protein data bank (PDB) on Nov. 13, 2005 were

downloaded as mmCIF files. The downloaded files were parsed to get the sequences of all

of the proteins, except for 1quz, 1jhq, 1zhe, 1quz, 2ad1, 1zir, and 2etg, which could not be

parsed effectively. These parsed sequences included only those residues with coordinates—

residues without coordinates were excluded from the sequences. Non-glycine residues that

lacked any side chain atoms were also excluded from the sequences. This procedure yielded

a total of 73,121 protein sequences.

The sequences of all Saccharomyces cerevisiae open reading frames (ORFs) were down-

loaded from ftp://genome-ftp.stanford.edu/pub/yeast/data download/sequence/ genomic sequence/orf dna/

on Oct. 19, 2004. All of the genes that could be translated were considered. This procedure

yielded 5865 proteins. To match protein structures with these yeast proteins, we BLASTed

(Altschul et al. 1990) each protein against all of the PDB protein sequences. Any matches

with a BLAST E-value of at least 10−5 were then aligned using CLUSTAL W (Thomp-
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son, Higgins, and Gibson 1994), and if the number of identities in the total length of the

alignment was > 80% then the match was saved. If there were multiple such matches to

a protein, then the best match was saved as the hit for that protein. This process yielded

275 matches. Since the number of proteins with solved structures is small compared to the

number of proteins with known sequences, restricting our data set to yeast proteins with

> 80% similarity to a sequence in the PDB limits the size of our data set. However, we

felt it was important to set this relatively stringent criterium for sequence identity to ensure

that the PDB structures accurately represented the actual folded conformations of the yeast

proteins with which they were matched.

For each yeast protein with a match, we recorded the aligned residues, the secondary

structure for each aligned residue, and the percent solvent-accessible area for each aligned

residue. The latter number was computed using only atoms within that protein chain in the

PDB structure (that is, we did not consider surface area buried by atoms of other protein

chains in the PDB structure). We first calculated the exposed surface area using the program

given by McConkey, Sobolev, and Edelman (2002), and then normalized these values by the

reference surface areas of an extended Gly-X-Gly peptide, as given on page 142, Table 4.4 of

Creighton (1992). We counted a residue as buried if it had less than 25% solvent accessibility,

and exposed otherwise.

We calculated contact maps of all the 275 PDB structures. We considered two residues

in contact if any of their two heavy (non-hydrogen) atoms were within a distance of 4.5Å

from each other, and if the two residues were not immediate sequence neighbors (that is,

we excluded trivial contacts). We then determined the contact density for each structure by

calculating the average number of contacts per residue.

Protein chains were assigned to the Structural Classification of Proteins (SCOP) database

(Murzin et al. 1995) classes given in version 1.69 available at http://scop.mrc-lmb.cam.ac.uk/scop/parse/index/html.

For each protein chain, we first searched for the PDB structure ID in the downloadable

dir.cla.scop.txt 1.69 file. If we found the ID, we then searched for the mmCIF file chain ID

in the file. In cases where a structure had multiple chains with different SCOP classes, we

took care to make sure the mmCIF chain ID was matched appropriately with the correct

SCOP class (the chain ID used in the mmCIF file is not always the same as the one used in

the PDB file for the same structure, and the SCOP classifications are made according to the

PDB chain ID). Some chains have different regions assigned to distinct SCOP classes. If we

found multiple entries for different regions of the chain, we recorded the SCOP class only if

all regions of the chain were assigned to the same class.
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We calculated evolutionary rates (dN) using the reciprocal-shortest-distance method

(Wall, Fraser, Hirsh 2003). All ORFs in S. cerevisiae were BLASTed against those in

Saccharomyces bayanus, and vice versa. Pairwise hits with an E-value of < 10−20 were

retained and aligned with CLUSTAL W, using the aligned protein sequences to align the

nucleotide sequences. Evolutionary rates, the numbers of non-synonymous substitutions per

non-synonymous site (dN) and synonymous substitutions per synonymous site (dS), were

computed for these hits using the PAML (Yang 1997) program codeml operating on codons

with a 9-free-parameter model for codon frequencies. Pairs with less than 80% aligned

residues were discarded, since there are no well established methods for dealing with gaps

when calculating evolutionary distances. Remaining aligned gene pairs having each other as

the shortest-distance (smallest dN) hit were designated orthologs and used in our analysis.

We retained all ORFs among the 275 with structural information for which we found a S.

bayanus ortholog, and found 203 such ORFs.

We calculated evolutionary rates at buried/exposed sites and sites of specific secondary

structure by discarding all but the relevant portions of the ortholog alignments generated

to compute overall evolutionary rates. For example, to compute the evolutionary rates at

buried sites, we considered only buried residues (identified as described above) and assembled

the corresponding codons into a reduced pair of ortholog sequences, from which evolutionary

rates were calculated exactly as described above. This procedure was carried out for buried

and exposed residues and for residues corresponding to the four secondary structure types

of helix (DSSP class H), sheet (DSSP class E), turn (DSSP classes S, T) and coil (DSSP

classes B, G, I, ‘.’). (DSSP is the “Dictionary of Protein Secondary Structure”, Kabsch and

Sander 1983.)

We calculated codon adaptation indices (CAI) exactly as described by Sharp and Li

(1987), using tabulated codon relative adaptiveness values for S. cerevisiae (Sharp and Li

1987). We used expression data from Holstege et al. (1998). After discarding all ORFs for

which we did not have expression data, we arrived at our final data set of 194 ORFs. This

data set is given as online supplementary table.

All statistical analyses were carried out with the statistics software R, version 2.1.1 (R

Development Core Team 2005). Principal component regression was done using the R pack-

age “pls”. Unless mentioned otherwise, all analyses were carried out on ranks, rather than on

the actual values of the quantities. In particular, all correlations are Spearman correlations,

and all principal component regression analyses were carried out on rank-transformed data.
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Results

Differences in substitution rates of different classes of residues

For each ORF, we determined the evolutionary rate (dN) of the buried and of the exposed

residues, and also of residues belonging to each of the four secondary structure classes of

helix, sheet, turn, and coil. We found that exposed sites evolve substantially faster than

buried sites, while secondary structure has little effect on evolutionary rate (Fig. 2). For

all residue types, the distribution of evolutionary rates was highly skewed. For example,

the fastest evolving buried sites evolve much faster than the median exposed site. Overall,

our findings for type-specific evolutionary rates confirmed the consensus in the literature

that solvent accessibility has a strong effect on the conservation of individual residues, while

secondary structure type has at most a weak effect (Goldman, Thorne, and Jones 1998;

Bustamante, Townsend, and Hartl 2000; Dean et al. 2002).

Effect of contact density on evolutionary rate

Because buried sites are more conserved, we might expect that proteins with a larger

fraction of buried sites should evolve slower. On the other hand, the prediction of England

and Shakhnovich (2003) is that proteins with a higher contact density are more designable,

and thus would be expected to evolve faster. To find out which of the two views is correct, we

correlated the overall evolutionary rate dN with contact density and the fraction of residues

that are buried. The former is the average of the number of contacts per residue, and is the

quantity treated theoretically by England and Shakhnovich (2003) (the first term of Eq. 1).

The latter does not explicitly count contacts, but is strongly correlated with contact density

(Table 1). Throughout this paper, we usually report results which hold for both measures

for only one measure, the contact density. An alternative method for estimating the

designability as given by Eq. 1 is to use the maximum eigenvalue of the contact matrix

(England and Shakhnovich 2003); doing so yields results that are highly similar to those for

contact density for all correlations shown in Table 1 (the Spearman correlation between the

maximum eigenvalue and dN is ρ = 0.25).

As predicted by the hypothesis that more designable proteins should evolve faster (Fig. 1),

we found that contact density and the fraction of buried sites correlated significantly with

dN (Table 1, Fig. 3). However, this correlation does not imply per se that the increased

rate of evolution is caused by contact density. It is well known that more highly expressed

proteins evolve more slowly in yeast (Pal, Papp, and Hurst 2001), and therefore we always
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have to control for expression level before we can conclude that any quantity has an effect

on dN (Pal, Papp, and Hurst 2003; Bloom and Adami 2003; Drummond, Raval, and Wilke

2006). We calculated the correlations between contact density and both expression level

as measured by DNA microarrays (Holstege et al. 1998) and codon adaptation index CAI,

another proxy for gene expression (Table 1). Expression level is not significantly correlated

with contact density. There was a weak correlation between CAI and contact density, but

this correlation had the opposite sign from what we would expect if a correlation between

CAI and contact density were to cause the correlation between contact density and dN .

These results indicate that the correlation between contact density and evolutionary rate is

not caused by an underlying correlation between contact density and expression level.

The results from the analysis of evolutionary rate at buried and exposed sites (Fig. 2)

seem to be at odds with the results from the analysis of the overall evolutionary rate of

the proteins (Fig. 3). Buried sites tend to be more conserved than exposed sites, but the

overall evolutionary rate increases with increasing contact density (and also fraction of buried

sites). However, this apparent paradox can be understood if we consider the effect of high

contact density on buried and exposed sites separately (Fig. 4). Whereas the dN at buried

sites shows a moderate increase with increasing contact density, the dN at exposed sites

grows dramatically. Even though proteins with high contact density have a reduced fraction

of exposed residues, the residues that are exposed in these proteins evolve very rapidly.

Therefore, the reduction in the fraction of exposed residues is more than compensated for

by the increased variability of exposed residues in proteins with high contact density.

Effect of protein length on evolutionary rate

We found a significant correlation between protein length and dN , and a strong cor-

relation between length and contact density (Table 1). This observation prompted us to

investigate the relationship between contact density and protein length. We found that the

correlation between these two quantities stems primarily from short proteins (Fig. 5). For

very short proteins, there is a large variation in contact density. In this regime, contact

density can be as low as 4 or as high as 7. As the protein length increases, there is an

overall increase in contact density, but at the same time the variability in contact density

decreases. Eventually, contact density levels off and remains in a range between approx-

imately 6 and 8. Therefore, we next calculated the correlations between contact density,

fraction of buried sites, protein length, and dN separately for short (<250 residues) and for

long (≥250 residues) proteins (Table 2). For short proteins, both the fraction of buried sites

and the protein length showed a significant positive correlation with dN . For long proteins,
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on the other hand, only the correlation between the fraction of buried sites and dN was

positive and significant; the correlation between length and dN turned negative and lost

significance. The correlation between contact density and dN was similar to but weaker

than the correlation of the fraction of buried sites and dN , but was not significant at the

5% level. Finally, we noted that the correlation between length and either contact density

or fraction of buried sites was stronger for short proteins (Table 2).

We then wanted to know whether the correlation between dN and protein length we

observed was potentially caused by a biased selection of protein structures, because our data

set was biased towards short proteins (median length is 263.5 residues for the 194 proteins

with structural information and a S. bayanus ortholog, versus 440 residues in all 4532 S.

cerevisiae proteins with a S. bayanus ortholog). Therefore, we calculated the correlation

between length and dN for all ORFs, including those without structural information. We

found that the overall correlation between length and dN was significant but weak (Table 3),

as previously reported (Drummond, Raval, and Wilke 2006). When we considered long and

short proteins separately, we found a similar picture as before. Length correlates much more

strongly with dN for short proteins than for long proteins. In fact, the amount of variance

in dN explained by length alone is approximately 10 times larger for short proteins than for

long proteins.

Since longer proteins are known to be expressed at lower levels (Coghlan and Wolfe 2000;

Munoz, Bogarad, and Deem 2004), a positive correlation between length and dN could

also be caused indirectly by expression level differences. To ascertain whether differences in

expression level could explain the difference in correlation between length and dN for short

and long proteins, we also calculated the correlation between expression and length for short

and long proteins separately. For all ORFs with evolutionary rate data, this correlation was

almost identical for short and long proteins (Table 3). For the 194 ORFs with structural

information, neither length nor contact density correlated significantly with expression level

when we considered short and long proteins separately (not shown). Therefore, it is unlikely

that the increased correlation between length and dN for short proteins is an artifact of

expression level differences in these proteins.

Effect of secondary structure composition on evolutionary rate

We also asked whether a protein’s composition of secondary structure types has an influ-

ence on evolutionary rate. For example, do proteins that are composed primarily of helices

evolve faster or slower than other proteins? To this end, we correlated dN with the fraction
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of helix sites fH, fraction of sheet sites fE, fraction of turn sites fT, and fraction of coil sites

fC (Table 1). We found that none of these quantities correlated significantly with dN , and

neither did they correlate with expression level or CAI (apart from a marginally significant

correlation between CAI and the fraction of turn sites). However, not surprisingly, we found

several strong and significant correlations among the different secondary structure measures

(Table 1).

Principal component regression

The correlation analysis presented in the previous subsections is useful to get an initial

understanding of the data and to find broad trends, but cannot detect more subtle inter-

actions between the various predictor variables or quantify the amount of variance in dN

these predictors explain independently of each other. Therefore, we carried out a principal

component regression (Mandel 1982; Drummond, Raval, and Wilke 2006) of dN against the

nine predictor variables of expression level, CAI, fraction of buried sites, contact density,

protein length, and the fractions of the four secondary structure types. Table 4 summarizes

the results from the principal component regression. We found five components that made

a significant contribution to the regression, and the total amount of variance explained was

43.34%. The component composition is given in Fig. 6. Among the components that con-

tributed significantly to the regression, Component 1 measures primarily the contact density

of a protein. Component 2 measures primarily aspects of secondary structure. Component

3 represents a protein’s expression level. Component 6 measures primarily the difference

between contact density and length. Finally, Component 7 measures the difference between

expression level and CAI. The components that did not contribute significantly to the re-

gression represent secondary structure (components 4, 5, and 9, not shown) or differences

between contact density and the fraction of buried sites (Component 8). Thus, the compo-

nent measuring expression level explained approximately 34% of the variation in dN , while

all other components together explained approximately 10% of the variation in dN .

We also regressed dN separately against expression level and CAI and against the seven

structural variables, to determine how much variance these two groups of variables explained

individually. Our results were very much in agreement with those of the joint regression

against all nine predictor variables. The regression of dN against expression level and CAI

explained 34.03% of the variance, while regression of dN against the seven structural variables

explained 11.97% of the variance. Thus, the total amount of variance explained in the

regression against all nine variables is approximately the sum of the amounts of variance
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explained from the two individual regressions, and therefore the regression of dN against

structural variables is unlikely to be confounded by expression level effects.

Does structure classification determine contact density or evolutionary rate?

We investigated the relationship between protein structure classification and both contact

density and evolutionary rate for 137 proteins (out of our final data set of 194) for which

we could determine the class of the structure according to the Structural Classification of

Proteins (SCOP, Murzin et al. 1995). Fig. 7 shows that there are some differences in both

contact density and evolutionary rate among proteins with different structure classes, but

that these differences are relatively minor. We found all-α proteins to have the lowest median

contact density and the highest variability in contact density, while α/β proteins had the

highest median contact density and the lowest variability. The median contact density was

significantly higher for α/β proteins than for all-α proteins (p = 0.0001) or for α+β proteins

(p = 0.0008), but not for all-β proteins (p = 0.070) [Wilcoxon rank sum tests with false-

discovery-rate correction (Benjamini and Hochberg 1995) for multiple testing]. The median

evolutionary rate was the highest for all-β proteins, but the individually largest evolutionary

rates were observed for α/β and α+β proteins. However, neither all-β proteins nor any other

class of proteins had a significantly elevated evolutionary rate after correction for multiple

testing (Wilcoxon rank sum tests with false-discovery-rate correction).

Discussion

Our results show that protein structure has a moderate effect on protein evolutionary rate.

Furthermore, this effect is consistent with the idea that proteins with more designable struc-

tures, as indicated by higher contact densities (England and Shakhnovich 2003), tend to

evolve more rapidly. Specifically, contact density, the fraction of buried sites, and protein

length each showed a significant correlation with dN , with R2 values between 4% and 8%.

These correlations were not caused by confounding effects due to co-correlations with pro-

tein expression level, which is the dominant determinant of evolutionary rate in yeast (Pal,

Papp, and Hurst 2001; Drummond, Raval, and Wilke 2006). The contact density and the

fraction of buried sites were strongly correlated with each other, and had roughly compara-

ble predictive power for the evolutionary rate, although the fraction of buried sites tended

to be a slightly better predictor than contact density. We found that secondary structure

composition and protein fold classification had almost no effect on evolutionary rate. Protein
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length was significantly correlated with both dN and contact density, making it difficult to

fully elucidate the separate contributions of length and contact density to evolutionary rate.

However, the fact that length is positively correlated with dN only for short proteins, but

that higher contact density leads to faster evolutionary rates for both long and short proteins,

supports the notion that higher contact density increases evolutionary rate independent of

length effects.

We corroborated the correlations we observed with a principal component regression

of dN against all structural predictor variables plus protein expression level and CAI. We

found that the principal components that measured primarily aspects of contact density

or fraction of buried residues explained 6.35% of the variation in dN . In comparison, the

principal component related to secondary structure explained only 1.32% of the variation in

dN . Overall, the principal component regressions indicated that the structural characteristics

we considered explained between 10 and 12% of the variation in evolutionary rate, and that

the important variables in this explanation were contact density (or the highly correlated

variable of fraction of buried residues) and protein length.

We had to restrict our analysis to those yeast proteins to which we could confidently assign

structures. Although there are tools that use homology modeling or other computational

methods to predict the structure adopted by a protein sequence, we chose to consider only

those yeast proteins that matched with at least 80% identity to an experimentally determined

structure. This choice eliminated the possibility of introducing biases due to inaccuracies

of the structure prediction tools, but it also substantially reduced the size of our data set

since the number of proteins with experimentally solved structures is relatively low. Overall,

we were able to match structures with only 194 of the 4223 yeast proteins for which we

had expression and evolutionary information. The proteins that we matched with structures

tended to be both more highly expressed and slower evolving than all yeast proteins for which

we had expression and evolutionary information (the median transcript per cell levels were

2.7 and 0.8, respectively; the median dN values were 0.03 and 0.08, respectively). One clear

consequence of limiting ourselves to proteins with experimentally solved structures is that

we are excluding those (usually faster evolving) proteins that contain large regions that are

intrinsically disordered (Brown et al. 2002). It is possible that the subset of yeast proteins

with structures also contains other biases that affect the correlation between contact density

and evolutionary rate. However, it is impossible to assess any such effects with the currently

available protein structures, and so further analysis of this question will have to await the

experimental determination of more protein structures.
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At first glance, our findings that proteins with higher contact densities (and therefore

a higher fraction of buried residues) evolve more slowly seems at odds with the tendency

for buried residues to be more conserved (Koshi and Goldstein 1995; Goldman, Thorne,

and Jones 1998; Mirny and Shakhnovich 1999; Bustamante, Townsend, and Hartl 2000;

Dean et al. 2002). The key point is to realize that while buried residues are generally more

conserved than exposed ones, increasing the fraction of buried residues leads to an overall

increase in the evolutionary rate of all residues in the protein, primarily via a dramatic

increase in dN for the exposed residues. We suggest that the increase in designability that

accompanies high contact density enhances the mutational tolerance of exposed residues

enough to more than offset the higher fraction of slower-evolving buried sites. A potential

reason for the elevated evolutionary rate at exposed sites is increased protein stability. Highly

designable proteins tend to be more stable (Wingreen, Li, and Tang 2004), and stability

promotes mutational tolerance (Bloom et al. 2005, 2006). A larger fraction of buried residues

suggests a more robust protein core whose stability may thus allow loops and other surface

features to mutate more freely. In other words, regions of high contact density form

stabilizing cores of conserved highly interacting amino acids that allow other exposed regions

of the sequence to mutate more freely (Shakhnovich et al. 2005).

Overall, our results support the notion that proteins with more designable structures

tend to evolve their sequences more rapidly. These findings suggest that the structures of

real proteins may differ substantially in their mutational tolerances, and that this effect is

manifested in the rates of sequence evolution across the yeast proteome. However, the overall

contribution of protein structure to evolutionary rate that we detect is still much smaller

than that made by protein expression level: the principal component representing protein

expression explains three times more variance in dN than all of the structural components.

Earlier work has shown that highly expressed proteins are more likely to adopt mixed α-helix

and β-sheet folds (Jansen and Gerstein 2000). However, this tendency did not lead to a net

relationship between contact density and expression level in our data set, since we found

these two variables to be uncorrelated. Therefore, protein structure appears to make an

independent contribution to evolutionary rate, although expression level remains the more

dominant force in determining the rate of sequence evolution.

However, it is possible that our analysis underestimates the contribution of protein struc-

ture to evolutionary rate. In attempting to apply the designability theory of England and

Shakhnovich (2003), our ignorance of the an coefficients in Eq. 1 has forced us to make the

severe approximation of truncating all higher order powers of the contact matrix, and esti-
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mating designability solely from contact density. The effect of this truncation is unknown,

but contact density is surely less informative than the full series of Eq. 1. Furthermore, the

derivation of Eq. 1 by England and Shakhnovich (2003) makes the twin assumptions that

proteins are stabilized only by pairwise contacts and that designability is simply equal to

the number of sequences that fold to a structure with an energy below some cutoff — both

of these assumptions are unlikely to be completely true for real proteins. For these reasons,

contact density is clearly an imperfect proxy for designability, and our inability to more

accurately quantify designability probably causes us to underestimate its true contribution

to protein evolutionary rate.

Despite these caveats, our work makes an important contribution by providing the some of

the first evidence about how a protein’s structure influences its evolutionary rate. Structure

is clearly only one of many factors that determines the extent of constraint on a protein’s

sequence, but its effect appears to be significant. Future progress in developing theoretical

treatments of structural designability and in better characterizing the other factors that

constrain sequence evolution should eventually allow for improved measurements of the net

effect of structure on protein evolution. For now, we simply add a structure’s designability

to the pantheon of factors that shape the rate of protein sequence evolution.

Supplementary Material

The data set of 194 S. cerevisiae ORFs analyzed in this work is available as supplementary

material at Molecular Biology and Evolution online (http://www.mbe.oxfordjournals.org/).
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Table 1: Spearman correlations between variables considered in this study.

dN x c fbur d L fH fE fT

x −0.58∗∗∗

c −0.40∗∗∗ 0.71∗∗∗

fbur 0.29∗∗∗ −0.09 0.20∗(∗)

d 0.24∗∗(∗) −0.01 0.20∗(∗) 0.80∗∗∗

L 0.19∗(∗) −0.14(∗) 0.13 0.79∗∗∗ 0.57∗∗∗

fH 0.03 −0.01 0.05 −0.05 0.13 0.07

fE −0.01 0.06 −0.05 0.10 0.06 −0.04 −0.80∗∗∗

fT −0.10 0.10 0.17∗ 0.19∗(∗) 0.19∗(∗) 0.06 −0.46∗∗∗ 0.28∗∗∗

fC 0.02 −0.10 0.02 −0.02 −0.33∗∗∗ −0.01 −0.40∗∗∗ −0.06 0.11

Significance levels: ∗∗∗P < 0.001; ∗∗P < 0.01; ∗P < 0.05

Note.—dN : nonsynonymous evolutionary rate; x: gene expression level; c: codon adapta-

tion index; fbur: fraction of buried sites; d: contact density; L: protein length; fH, fE, fT, fC:

fraction of sites with secondary structure helix, sheet, turn, coil, respectively. Significance

levels in parentheses disappear after correction for multiple testing (Benjamini and Hochberg

1995).

Table 2: Spearman correlations ρ for all ORFs with structural information, calculated sep-

arately for short and long proteins.

L < 250 L ≥ 250

(n = 85) (n = 109)

ρ(d, dN) 0.20+ 0.14

ρ(fbur, dN) 0.27∗ 0.21∗

ρ(L, dN) 0.22∗ −0.14

ρ(d, L) 0.46∗∗∗ 0.22∗

ρ(fbur, L) 0.61∗∗∗ 0.47∗∗∗

Significance levels: ∗∗∗P < 0.001; ∗∗P < 0.01; ∗P < 0.05; +P < 0.1

Note.—n is the number of ORFs in each group, and other symbols are defined as in Table 1.
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Table 3: Spearman correlations ρ for all ORFs with evolutionary rate data, calculated sep-

arately for short and long proteins.

all lengths L < 250 L ≥ 250

(n = 4523) (n = 935) (n = 3597)

ρ(L, dN) 0.07∗∗∗ 0.13∗∗∗ 0.04∗

ρ(L, x) −0.24∗∗∗ −0.17∗∗∗ −0.15∗∗∗

Significance levels: ∗∗∗P < 0.001; ∗∗P < 0.01; ∗P < 0.05

Note.—n is the number of ORFs in each group, and other symbols are defined as in Table 1.

Table 4: Percent variance explained in dN and in the predictor variables, as found by a

principal component (PC) regression of dN against 9 predictor variables.

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 total

dN 2.81 1.32 33.59 0.00 0.00 3.54 1.27 0.65 0.15 43.34
predictor

space
28.83 23.86 19.10 12.47 7.94 3.63 1.27 0.65 0.15 100.00

Note.—Predictor variables are x, c, fbur, d, L, fH, fE, fT, and fC, with symbols defined

as in Table 1. Principal components that make a statistically significant contribution to

the variation in dN are shown in boldface (P < 0.05 for all components in boldface). The

percent values for the individual components do not sum exactly to the numbers given under

total because of rounding errors. See Fig. 6 for component composition.
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Figure 1: A model for how the designability of a protein’s structure might affect the rate at

which its sequence evolves. If many sequences fold into a given structure (highly designable),

then many mutations preserve the structure, i.e., the structure is mutationally tolerant. As

a consequence, we observe rapid evolutionary divergence. Conversely, if few sequences fold

into a given structure, then the structure is mutationally brittle, and evolutionary divergence

is slow.

Figure 2: Distributions of evolutionary rates dN for different residue types, shown as modified

box plots. (Boxes enclose all data between the first and third quartile, and are divided at the

median. Whiskers at top extend to the maximum observation or 1.5 times the box height

from the top of the box, whichever is smaller. Similarly, whiskers at bottom extend to the

minimum observation or 1.5 times the box height from the bottom of the box, whichever is

larger. All data points outside the range of the whiskers are drawn individually. See e.g.

Sokal and Rohlf 1994.) For all residue types, the distribution of dN is heavily skewed, and

thus not well characterized by its mean and standard deviation. For the two residue types

“exposed” and “helix”, one outlier each falls outside the top boundary of the graph. The

evolutionary rates in all groups are significantly different from each other with P < 0.01

(Wilcoxon signed rank test), apart from helix and coil (P = 0.01), and coil and turn (P =

0.37, not significant).

Figure 3: Evolutionary rate dN as a function of a protein’s contact density.

Figure 4: Evolutionary rate dN for buried sites (left panel) or exposed sites (right panel)

only, as a function of the protein’s contact density.

Figure 5: Contact density as a function of protein length.

Figure 6: Composition of the first eight principal components (PCs). Symbols representing

predictor variables are as defined in Table 1. Each dot represents the contribution of the

corresponding predictor variable to the principal components. For example, in the top-left

panel we see that L makes a strong, positive contribution to PC 1, and a weak, negative

contribution to PC 2.
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Figure 7: Modified boxplots of the distributions of contact density (left) and evolutionary

rate (right) for different SCOP classes. Not shown are 3 proteins classified as multi domain

(α and β), 2 classified as membrane and cell surface proteins and peptides, 2 for which the

classification was ambiguous, and 55 for which no classification could be determined.
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Figure4
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Figure 6
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