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Much recent work has explored molecular and population-genetic
constraints on the rate of protein sequence evolution. The best
predictor of evolutionary rate is expression level, for reasons that
have remained unexplained. Here, we hypothesize that selection
to reduce the burden of protein misfolding will favor protein
sequences with increased robustness to translational missense
errors. Pressure for translational robustness increases with expres-
sion level and constrains sequence evolution. Using several se-
quenced yeast genomes, global expression and protein abundance
data, and sets of paralogs traceable to an ancient whole-genome
duplication in yeast, we rule out several confounding effects and
show that expression level explains roughly half the variation in
Saccharomyces cerevisiae protein evolutionary rates. We examine
causes for expression’s dominant role and find that genome-wide
tests favor the translational robustness explanation over existing
hypotheses that invoke constraints on function or translational
efficiency. Our results suggest that proteins evolve at rates largely
unrelated to their functions and can explain why highly expressed
proteins evolve slowly across the tree of life.

evolutionary rate � protein misfolding � yeast � translation errors � gene
duplication

A central problem in molecular evolution is why proteins
evolve at different rates. Protein evolutionary rates, quan-

tified by the number of nonsynonymous nucleotide changes per
site (dN) in the encoding genes, are routinely used to build
phylogenetic trees, detect selection, find orthologous proteins
among related species (1), and evaluate the functional impor-
tance of genes (2), yet we possess only hints of the biophysical
cause of rate differences. Thirty years ago, Zuckerkandl (3)
proposed that a protein’s sequence will evolve at a rate primarily
determined by the proportion of its sites involved in specific
functions (or ‘‘functional density’’). Although this proposal has
gained wide acceptance (2), measurement of functional density
remains problematic because residues may contribute to protein
function in unpredictable ways, and arduous sequence-wide
saturation mutagenesis and mutant characterization studies are
required to ascertain these effects.

Instead, many recent studies have focused on other, more
readily obtained, measures that may approximate functional
density. For example, protein–protein interactions presumably
constrain interfacial residues, and some reports indicate that
highly interactive proteins evolve slowly (4). The intuition that a
protein’s overall functional importance should amplify the fit-
ness costs of mutations at sites that make subtle functional
contributions has been captured in analyses of how a gene’s
functional category (5, 6), its essentiality for organism survival
(6–8), or the fitness effect of its deletion (or ‘‘dispensability’’) (9,
10) correlate with evolutionary rate. In all cases, the effects
under consideration explain only a small fraction (�5% or less)
of the observed variation in evolutionary rate as quantified by
their squared correlation coefficients, r2.

Surprisingly, from bacteria to mammals, the best indicator of
a protein’s relative evolutionary rate is the expression level of the
encoding gene, measured in mRNA transcripts per cell (5, 6,
11–14). Highly expressed proteins evolve slowly, accounting for
as much as 34% of rate variation in yeast (5). Moreover, after
expression level is controlled for, the remaining influence of

protein–protein interactions and dispensability decreases or, in
some datasets, vanishes completely (15–17). Expression level’s
disproportionate influence remains unexplained (5, 6, 16–20).

Significant questions have persisted about whether expression
level truly determines evolutionary rate, because highly ex-
pressed proteins may possess unique structural or functional
features that constrain their sequences. Paralogous gene pairs
resulting from a whole-genome duplication (WGD) event, such
as in the lineage of Saccharomyces cerevisiae (21), minimize such
differences: homology ensures a similar structure, and the
majority of yeast paralogs show little, if any, difference in
function (22). Analyses of evolutionary rates among paralogs
have, to date, confirmed only a small independent role for
expression level. Among a set of 185 yeast paralog pairs,
evolutionary rate and expression level in mRNA molecules per
cell correlated (r2 � 0.341), but the correlation of rate and
expression differences between members of a paralogous pair
was much smaller (r2 � 0.046), and no significant tendency for
the higher-expressed paralog to evolve slower was found (5). A
recent study that proved the WGD in yeast (21) analyzed
patterns of paralog evolutionary rates and concluded that they
supported a widely cited model of evolution by gene duplication
(23) in which one duplicate gene retains the ancestral function
and evolves slowly, whereas the other duplicate gene evolves
rapidly and acquires a new function. Such behavior would
obscure the influence of other variables such as expression level
on paralog evolutionary rates.

Recently, several resources have become available that allow
a more thorough analysis of these issues: a set of 900 S. cerevisiae
paralogs derived from gene synteny and traceable to the WGD
event (21), a global measurement of yeast protein abundances
(24), and several additional yeast genome sequences (21, 25).
Here, using this new information, we examine the strength,
independence, and physical basis of expression-based constraints
on protein sequence evolution. We carry out a systematic
analysis designed to answer several questions. How strongly does
expression constrain yeast protein evolution after controlling for
structure and function? What role does functional differentia-
tion play, compared with gene expression, in predicting the
relative evolutionary rates of duplicate genes? And, what do
these correlations reveal about underlying causes of evolutionary
rate differences? We introduce a previously unexplored hypoth-
esis to explain why highly expressed proteins evolve slowly and
test this explanation against other causal hypotheses by using
genome-wide data. Finally, we explore whether the selective
pressure that we propose increases functional density and ex-
amine the biological costs underlying it.

Materials and Methods
Gene Sequences. Genome sequences for S. cerevisiae, Saccharo-
myces kudriavzevii, Saccharomyces paradoxus, Saccharomyces
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mikatae, and Saccharomyces bayanus were obtained from the
Saccharomyces Genome Database (ftp:��genome-ftp.stanford.
edu). The genome sequence of Kluyveromyces waltii was ob-
tained from ref. 21.

Identification of Orthologs and Paralogs. A total of 900 paralogous
S. cerevisiae genes identified by synteny (21) were downloaded. Of
these pairs, 290 (580 genes) were nonribosomal proteins with a
measured expression level (26) and an ortholog in S. bayanus and
were used in our analysis. We excluded ribosomal proteins from all
analyses because they tend to be highly expressed and slow-evolving
and could skew our results.

Orthologs for S. cerevisiae genes in members of the Saccha-
romyces genus were found by the reciprocal shortest distance
(RSD) algorithm (1) with a protein–protein BLAST software (27)
E-value cutoff of 10�20, 80% minimum alignable residues, and
distances computed as dN by using PAML (see below). RSD
yielded 4,255 nonribosomal S. cerevisiae genes with S. bayanus
orthologs and a measured expression level; 2,790 genes with S.
mikatae orthologs; 4,407 genes with S. paradoxus orthologs; and
2,984 genes with S. kudriavzevii orthologs. The S. paradoxus
ortholog set was expanded to include S. cerevisiae matches
reported by Kellis et al. (ref. 25). Our data sets are available upon
request.

Expression-Level Data. We used gene expression data measured in
mRNA molecules per cell by Holstege et al. (26). To estimate
variability in expression-level data, we used normalized fluores-
cence data collected by using the same commercial oligonucle-
otide array as used by Cho et al. (28), with mean expression levels
computed as described in ref. 29. Because laboratory growth
media and temperatures may not reflect evolutionarily relevant
environmental conditions, potentially distorting expression pro-
files, we repeated all analyses by using each gene’s codon
adaptation index (CAI) (30) as an expression-level proxy (10)
(see Supporting Text and Fig. 4, which are published as support-
ing information on the PNAS web site). We assume that species
closely related to S. cerevisiae have similar expression profiles.

Measurement of Evolutionary Rates. Orthologous gene alignments
were constructed from protein sequences aligned by using

CLUSTALW (31). dN and the number of synonymous substitutions
per site (dS) were estimated by maximum likelihood using the
PAML software (32) program CODEML operating on codons.

Statistical Analysis. We used R (33) for statistical analysis and
plotting. To compute correlations on log-transformed dN data,
we applied the transformation f(k) � log(k � 0.001) as described
in ref. 10 to avoid excluding zeros.

Results
Expression Level and Evolutionary Rate. Using genome-wide mea-
surements of expression level (mRNA molecules per cell) and
evolutionary rate (dN) in S. cerevisiae, we confirm that expres-
sion level strongly predicts protein evolutionary rate. Fig. 1a
shows that expression level alone explains between one-quarter
and one-third of the uncorrected variance in dN for 4,255 S.
cerevisiae proteins with S. bayanus orthologs and measured
expression levels (Pearson’s correlation; rdN-expr

2 � 0.28, P ��
10�9) and for the 580 paralogs (290 pairs) (rdN-expr

2 � 0.31,
P �� 10�9). We find that the strongest simple relationship linking
dN and expression is a power law (linear on a log-log scale) and
that evolutionary rates span three orders of magnitude. Expres-
sion level affects evolutionary rates of duplicated and nondu-
plicated genes similarly.

Structural or functional differences between proteins with
differing expression levels may systematically bias the dN–
expression relationship. If the power-law relationship observed
across paralogs holds between paralogs in a pair, the ratio of
paralog expression levels should correlate linearly with the ratio
of evolutionary rates on a log-log scale. Fig. 1b confirms this
prediction (rdN-expr

2 � 0.29, P �� 10�9) and demonstrates that a
more limited previous analysis (5) underestimated this relation-
ship’s strength by more than 6-fold.

Measurement noise attenuates correlations, possibly obscur-
ing the strength of the relationships that we have examined. For
example, yeast gene expression levels measured by different
groups correlate with coefficients of only 0.39–0.68 (29). We,
therefore, first examined the dependence of relative interparalog
evolutionary rate on the degree of expression-level disparity and
found a dramatic association (Fig. 1c). For all 290 pairs, in 192
cases, the higher-expressed protein evolved slower (P � 10�7,

Fig. 1. Expression level governs gene and paralog evolutionary rates in S. cerevisiae. (a) Highly expressed proteins evolve more slowly, and paralogs mirror the
genome-wide pattern. Evolutionary rates measured relative to S. bayanus for 4,255 S. cerevisiae genes (gray squares) and 580 paralogous genes (black squares)
correlate with expression levels. Lines show best log-log linear fit. For all genes (dashed line), r2 � 0.28, P �� 10�9; for paralogs (solid line), r2 � 0.31, P �� 10�9.
(b) Within a paralog pair, the ratio of expression levels correlates with the ratio of evolutionary rates (r2 � 0.29, P �� 10�9), as predicted from the log-log linear
relationship in a. Each pair generates two ratio points, making the plot symmetrical. (c) Relative expression level determines relative evolutionary rate. The
percentage of pairs in which the higher-expressed paralog evolves slower are shown as a function of minimum paralog pair expression ratio (black squares). Point
areas are proportional to the number of included pairs.
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binomial test). Among the 19 pairs for which expression differs
by at least 18-fold, all of the higher-expressed paralogs have
evolved slower and rdN-expr

2 � 0.67. The dN–expression correla-
tion also can be corrected for attenuation, allowing us to
determine how much of the explainable variation in dN, varia-
tion not due to measurement noise, can be attributed to expres-
sion level. Spearman’s correction for attenuation in a squared
correlation coefficient is rcorr

2 � rdN-expr
2 �(rdNrexpr). We found that

the correlation between two independent measurements of yeast
gene expression by using the same commercial oligonucleotide
array was rexpr � 0.72 (Pearson’s correlation; 5,555 genes), and
the correlation between dNs that we measured by using or-
thologs in S. bayanus to those measured by using S. paradoxus
orthologs was rdN � 0.92 (4,208 genes), yielding an overall rcorr

2 �
0.47 for the 580 paralogs and rcorr

2 � 0.42 for all 4,255 genes.
These analyses lead us to conclude that expression level

accounts for roughly half of the explainable variation in yeast
protein evolutionary rates, even when considering only proteins
with similar structures and functions.

Functional Divergence of Gene Duplicates and Evolutionary Rate. Are
the disparate evolutionary rates in paralogous proteins a result
of acquisition of new function (‘‘neofunctionalization’’) in one
paralog (21, 23), or do they simply reflect expression differ-
ences? Both explanations predict asymmetric paralog evolution-
ary rates measured against a preduplication relative. However,
only the expression level explanation predicts that asymmetric
rates will continue indefinitely, which can be measured by using
a postduplication relative in which the genomic upheavals after
WGD (massive gene loss, genome rearrangements, neofunction-
alization) have long since quieted.

For S. cerevisiae, the preduplication relative K. waltii, which

diverged �100 million years ago, allows evaluation of evolution-
ary rates relative to a single gene descended directly from the
ancestral duplicated gene (21) (Fig. 2). S. paradoxus, at present
the closest relative of S. cerevisiae with a sequenced genome, with
a divergence time of �5 million years ago (25), provides a
suitable postduplication relative (Fig. 2).

We found unique S. paradoxus orthologs and measured ex-
pression levels for both paralogs in 73 of the 115 paralog pairs
claimed to strongly support Ohno’s functional divergence model
(21) (as above, we excluded ribosomal proteins). In 64 of 73 cases
(88%), the faster-evolving paralog relative to K. waltii also has
evolved faster relative to S. paradoxus, even though �100 million
years have elapsed since the duplication event. [When CAI was
used as a proxy for expression level, 74 of 84 pairs (88%) showed
the same pattern.] In 48 of 52 pairs (92%) in which expression
differs at least 2-fold, the higher-expressed paralog evolves
slower. Finally, as Fig. 1 shows, duplicated genes obey the same
evolutionary-rate–expression relationship as the rest of the
genome, and relative expression between paralogs predicts their
relative evolutionary rates.

In sum, we find little evidence that functional differentiation
causes disparate evolutionary rates among duplicate genes and
plentiful evidence for the influence of expression level. A
categorical consideration of neofunctionalization models is be-
yond our scope; we simply note that relative expression level
cannot be ignored in evolutionary analyses of gene duplicates.

Causal Hypotheses. Having established the strong and apparently
independent correlation of expression level with evolutionary rate,
we now turn to our central question: Why do highly expressed
proteins evolve slowly? We will first attend to hypotheses offering
a unified mechanistic explanation for most or all of expression
level’s effect, and only then address the possibility that expression
level merely aggregates many independent effects to create the
illusion of a single cause. In considering unified explanations, we
begin by eliminating all of the effects considered in the Introduc-
tion: previous analyses have already established that essentiality,
dispensability, recombination rate, functional category, amino acid
biosynthetic cost, and number or type of protein–protein interac-
tions explain roughly 0–5% of evolutionary rate variation, whereas
expression level accounts for �30%.

As Table 1 shows, the nonparametric correlation between
expression and dN is twice as strong as that between expression
and dS. Nucleotide-level pressures, such as transcription-
associated mutation or DNA repair or selection on mRNA
structure or stability, cannot be the primary explanation for why
highly expressed proteins evolve slowly, because they predict
equal expression-linked constraints on dS and dN.

We now consider three hypotheses for why highly expressed
proteins evolve slowly. The first, most concisely phrased by
Rocha and Danchin (6), posits that each protein molecule
contributes a small amount to organism fitness by performing its

Fig. 2. Phylogenetic relationships between analyzed yeast species. Relation-
ships follow ref. 49, branch lengths indicate nucleotide substitution distances
from ref. 50, and the indicated time of the WGD follows ref. 21.

Table 1. Evolutionary rate vs. expression correlations (Kendall’s �) relative to four yeast
species for S. cerevisiae genes, including and excluding preferred codons

Ortholog (no. of genes)

�

All codons
Codons with relative

adaptedness �0.5

dN–expr dS–expr dN–expr dS–expr

S. bayanus (2,614) �0.300*** �0.181*** �0.273*** �0.010
S. mikatae (2,102) �0.335*** �0.163*** �0.302*** �0.009
S. paradoxus (4,383) �0.340*** �0.153*** �0.303*** �0.046**
S. kudriavzevii (2,193) �0.340*** �0.162*** �0.314*** �0.004

*, P � 10�2; **, P � 10�4; ***, P � 10�6.
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function, so mutations that reduce two proteins’ functional
output (e.g., catalytic rate) equally will have fitness effects
weighted by the number of molecules of each protein in the cell,
or their abundances, causing the more abundant protein to
evolve slower. We call this the ‘‘functional loss’’ hypothesis. Note
that a highly expressed protein (whose encoding gene is tran-
scribed at high levels) can have a low abundance (if the mRNA
is translated infrequently or the protein is rapidly turned over)
and vice versa. The second hypothesis, due to Akashi (18, 19),
holds that because increased expression level leads to selection
for synonymous codons that are translated faster or more
accurately, nonsynonymous mutations to translationally less
efficient codons may be evolutionarily disfavored, slowing the
rate of amino acid sequence change. We call this the ‘‘transla-
tional efficiency’’ hypothesis.

We advance a third hypothesis based on a simple observation:
to reduce the number of proteins that misfold due to translation
errors, selection can act both on the nucleotide sequence, to
increase translational accuracy by optimizing codon usage (34),
and on the amino acid sequence, to increase the number of
proteins that fold properly despite mistranslation (Fig. 3). We
call this increased tolerance for translational missense errors
‘‘translational robustness.’’ At the canonical ribosomal error rate
of 5 errors per 10,000 codons translated (35), �19% of average-
length yeast proteins (415 aa) contain a missense error, and these
errors may cause misfolding (36). Proteins vary in their tolerance
for amino acid substitutions (37), providing the necessary raw
material for evolution, whereas misfolded-protein aggregation
and toxicity (36, 38) and production of nonfunctional protein
(39) impose burdens on most cellular metabolisms, providing
selective pressure. So long as translationally robust sequences are
comparatively rare, intensified selection pressure resulting from
increased expression level will slow the rate of amino acid
substitution in higher-expressed proteins.

These three hypotheses differ in important ways. The func-
tional loss hypothesis points to loss of protein function as the key
cost constraining evolution. The translational efficiency hypoth-
esis states that the protein sequence is constrained as a side effect
of selection on the mRNA sequence. And the translational
robustness hypothesis instead implicates the direct costs of
misfolded proteins, independent of function. These hypotheses
make testable and opposing predictions, which we now consider.

Functional Loss vs. Translational Robustness. Given two proteins
with differing abundances A � a, measured in protein mole-
cules per cell, but oppositely differing expression levels x � X,
measured in mRNA molecules per cell, the functional loss
hypothesis predicts dNAx � dNaX: the more abundant protein

will evolve slower. By contrast, the translational robustness
hypothesis states that fitness costs are dominated by transla-
tion error-induced misfolding, leading to the opposite predic-
tion (dNAx � dNaX), because despite Ax’s higher abundance,
aX’s higher expression level suggests more frequent translation
and turnover (40).

We tested these competing predictions by using a recent global
analysis of protein abundance in yeast (24). Ten thousand unique
pairs of yeast proteins for which one member had a higher
expression level and a lower abundance than the other were
assembled at random. In 5,579 of 10,000 pairs, the more abun-
dant but lower-expressed protein evolved faster (dNAx � dNaX,
P �� 10�9, binomial test) consistent with translational robustness
but contradicting the functional loss hypothesis. When we sam-
pled pairs with at least a 2-fold difference in each measure,
limiting the influence of measurement noise, 5,430 of 10,000
pairs showed the same pattern (P �� 10�9). Among synteny-
derived paralog pairs, 25 of 48 showed the same pattern (not
significant), as did 7 of 8 pairs with 2-fold differences (P � 0.05).
When CAI was used as an expression proxy (see Materials and
Methods), 6,262 of 10,000 pairs (P �� 10�9) and 17 of 20 paralog
pairs (P � 0.002) also showed the same pattern. These results
suggest that the number of translation events, a correlate of
expression level and CAI, is a better predictor of relative protein
evolutionary rates than the number of functional protein
molecules.

The functional loss hypothesis rests on the supposition that
protein molecules contribute roughly the same amount to or-
ganism fitness through their biological function, so that less-
abundant proteins are less important to organism fitness. We
find this assumption difficult to accept on biochemical grounds.
Protein abundance seems to depend mainly on substrate or
target availability, which has no obvious relationship to fitness
contribution. For example, most gene regulatory proteins and
DNA polymerases have only a few hundred targets and corre-
spondingly low cellular abundances yet play crucial cellular roles.
Although cells seem unlikely to invest in synthesis of high-
abundance proteins without a comparably high return, the
inference that low-expression proteins generate low fitness re-
turns does not follow. Accordingly, under the functional loss
hypothesis, we should expect low-expression proteins to span the
range of evolutionary rates while high-expression proteins evolve
under a more uniformly tight constraint. Instead, in yeast, the
slowest-evolving low-expression proteins evolve an order of
magnitude more rapidly than do their highly expressed coun-
terparts (Fig. 1a). This pattern again supports translational
robustness, which supposes that, whereas folded proteins may
confer widely varying fitness benefits, misfolded polypeptides
impose similar costs.

Translational Efficiency vs. Translational Robustness. Pressure to
retain translationally efficient preferred codons will constrain
synonymous evolution (dS) and, as a consequence, protein
evolution (dN). Pressure for translationally efficient amino acids
(19) would bias amino acid preferences at aligned positions in
high- and low-expression paralogs. By contrast, translational
robustness predicts that the dS and dN constraints reflect two
independent points of selection (Fig. 3) and that no consistent
translational preference for either codons or amino acids is
required to explain the dN trend.

To assess the protein-level constraint attributable to selection
for preferred codons, which is strongest at functionally important
and conserved sites (36), we computed evolutionary rates by
using the portions of genes consisting only of unpreferred
codons. Because those sites most constrained by codon prefer-
ence are removed in these reduced genes, the translational
efficiency hypothesis predicts that the correlation of expression
level with dS and dN should vanish. Translational robustness

Fig. 3. Translational selection against the cost of misfolded proteins can act
at two distinct points. mRNA (left) may be translated without errors to
produce a folded protein (top); if an error is made, the resulting protein may
still fold properly, or may misfold and undergo degradation (right). Selection
can act at A to increase the proportion of error-free proteins through codon
preference (translational accuracy), and also at B to increase the proportion of
proteins that fold despite errors (translational robustness). We neglect mis-
folding of error-free proteins (see text).
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hypothesizes a direct constraint on the amino acid sequence, so
the dN–expression correlation should remain strong while the
dS–expression correlation vanishes, essentially an impossibility
if synonymous-site selection for translational efficiency governs
protein evolution. Using sets of aligned S. cerevisiae-ortholog
genes (see Materials and Methods), we discarded all aligned
codons except those where the ‘‘relative adaptedness’’ (30) of the
S. cerevisiae codon was �0.5. We then recomputed dN, dS, and
their expression correlations by using these reduced genes,
discarding genes with �30 codons or dS values of �3.0.

Table 1 shows that, after removal of preferred codons, the
reduced genes showed only slightly reduced dN–expression
correlations, whereas the dS–expression correlations all became
insignificant or, in the case of S. paradoxus, reversed direction.
We found similar results by using CAI as an expression proxy
(see Table 2, which is published as supporting information on the
PNAS web site). These results demonstrate that expression-
linked synonymous selection is concentrated at sites bearing
preferred codons and that sites showing no such selection still
show strong protein-level constraint, consistent with selection
for translational robustness.

Translational efficiency selection on amino acids predicts asym-
metric substitution of one amino acid for another in highly ex-
pressed proteins. If two amino acids x and y have efficiencies x � y,
then at aligned positions in paralogs where both x and y occur, y
should disproportionately appear in the higher-expressed paralog.
We tabulated these pair-wise frequencies in the 580 paralogs
analyzed in Fig. 1 and assessed statistical significance by using a
binomial test with the false-discovery-rate correction for multiple
tests (41). All residue pairs appeared in our dataset, but no pairs
showed asymmetries at the 1% or 5% levels.

As a control, we performed the same test by using synonymous
codons and found that 21 codon pairs showed significant asym-
metries at the 1% level, invariably favoring the codon with higher
relative adaptedness in the higher-expressed paralog (Table 3,
which is published as supporting information on the PNAS web
site). Of the 21 favored codons, 17 were unique and encoded 13
of the 18 amino acids with synonymous codons.

Our results offer no support for translational efficiency selec-
tion on amino acids but confirm such selection on synonymous
codons, though with little consequence for dN. Although trans-
lational efficiency selection may constrain amino acid sequences
to some degree, it cannot explain why highly expressed yeast
proteins evolve slowly.

Expression Level Is a Master Causal Variable. We now consider the
possibility that many variables (e.g., dispensability, number of
protein–protein interactions, amino acid biosynthetic cost, codon
preference, recombination rate) independently exert small but
cumulatively severe constraining effects on protein sequence evo-
lution, and expression level’s influence derives from its relation-
ships to each of these variables. Although such a possibility cannot
be ruled out, several observations make it unlikely.

First, expression level is a major determinant of most of the
candidate variables: high expression causes decreased dispens-
ability (42), causes more experimentally detected interactions
(15), increases pressure for cheaper proteins and higher trans-
lational efficiency (18), and, through increased transcription,
causes exposed chromatin structures that are hotspots for re-
combination. No reverse mechanisms have been proposed by
which these variables cause genes to become highly expressed.

Second, as we have noted earlier, the degree to which these
variables appear to influence evolutionary rate becomes small or
even disappears after controlling for expression level. This trend
holds for protein–protein interactions (4, 15), recombination rates
(43), and amino acid cost in bacteria (6), as well as essentiality,
dispensability, network centrality, and gene length (44).

Discussion
We have provided evidence that expression level is the dominant
determinant of evolutionary rate in S. cerevisiae genes. Our
results show that (i) expression level explains roughly half the
variation in gene evolutionary rates; (ii) expression level affects
evolutionary rates of duplicated and singleton genes similarly;
(iii) once variability in expression level is accounted for, the
higher-expressed member of a paralog pair is disproportionately
likely to evolve slower; (iv) asymmetric evolutionary rates in
duplicated genes persist over tens of millions of years, consistent
with expression-level differences but not neofunctionalization;
and (v) expression level appears to influence evolutionary rate
through the number of translation events rather than cellular
protein abundance, constraining the protein sequence directly
rather than through translational efficiency selection.

We have introduced a general hypothesis to explain why highly
expressed proteins evolve slowly: selection against the expression-
level-dependent cost of misfolded proteins favors rare protein
sequences that fold properly despite translation errors (Fig. 3).
Tests comparing the opposing predictions of this translational
robustness hypothesis to two previously advanced alternative hy-
potheses show that genome-wide yeast data support the predictions
of translational robustness and contradict the alternatives. Our
hypothesis contradicts the intuitive notion that highly expressed
proteins evolve slowly because they are more functionally impor-
tant, perhaps explaining why more direct measures of functional
importance, such as essentiality and dispensability, explain far less
variation in evolutionary rates. The hypothesis also provides an
explanation for the widely observed correlation between dN and dS
(20): Fig. 3 indicates how one cost (misfolding) can be counteracted
in two ways (translational accuracy, slowing dS, and translational
robustness, slowing dN).

Would more translationally robust proteins have a higher
functional density (3)? Consider URA5 and URA10 (orotate
phosphoribosyltransferases 1 and 2), paralogs with similar func-
tions that differ �60-fold in expression and 6-fold in evolution-
ary rate. Do we expect URA5 to have a larger proportion of its
residues involved in specific functions? The translational robust-
ness hypothesis suggests not. Instead, functionally unconstrained
residues may be more carefully selected to preserve the protein’s
native structure after missense substitutions in URA5 than in
URA10. These residues would contribute to fitness not by aiding
in URA5’s function, but by preventing the burdensome misfold-
ing of mistranslated polypeptides. Thus, the fitness density of a
protein, the proportion of residues under meaningful natural
selection, can be larger than the functional density, and directly
determines the rate of sequence evolution.

Functional constraints slow evolution at certain sites; our
results suggest that these constraints operate on a sequence-wide
background rate determined largely by expression. Expression
patterns as well as levels may impose additional constraints if
highly expressed proteins have unique cellular localization or
cell-cycle expression profiles.

How large are the costs underlying translational robustness?
We can make a crude general estimate. As mentioned above,
�19% of average-length yeast proteins will contain a missense
error at typical ribosomal error rates. For diverse proteins,
20–65% of amino acid substitutions lead to inactivation (37, 45),
generally due to misfolding (37). Consequently, 4–12% of a
typical protein species would be expected to misfold because of
missense errors. Because yeast protein abundances span five
orders of magnitude (24), the fitness impact of error-induced
misfolding could range widely. If we assume a 5% misfolding
rate, the number of misfolded protein molecules ranges from
negligible, as for the �3 misfolded molecules to generate the
measured cellular complement of 64 molecules of DSE4 (endo-
1,3-�-glucanase), to potentially devastating, as for the �63,000
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misfolded molecules required to generate 1.26 million molecules
per cell of the H�-transporting P-type ATPase PMA1 (24). The
latter misfolded species would be more abundant than 97% of
yeast proteins (24). We have neglected protein turnover, a
further cost multiplier. We also have neglected the misfolding of
error-free proteins; a likely biophysical mechanism for increas-
ing translational robustness will also mitigate stochastic misfold-
ing (see below). Protein misfolding generates highly toxic species
capable of killing cells in a concentration-dependent manner
(46), so increased translational robustness in highly expressed
proteins may reflect pressure for survival as well as efficiency.

Can selection for accuracy through codon preference elimi-
nate (or make negligible) such error-induced misfolding costs?
Although codon preference cannot counter mistranslation due
to misacylation of tRNAs and transcription errors, both of which
occur at frequencies approaching those of missense errors (35),
experimental measurements of a 4- to 9-fold reduction in
missense errors from preferred codons have been reported (47).
Assuming all preferred codons are translated 10-fold more
accurately than nonpreferred codons, how much accuracy im-
provement can we expect? Randomly selecting codons produces
genes containing �35% preferred codons, whereas the most
highly expressed genes have �80% preferred codons (only 9 of
the 4,255 yeast genes that we analyzed contain �90% preferred
codons). Even if translational error-rate measurements reflect
the worst case of codon-randomized genes, the maximum accu-
racy gain in the most optimized genes is roughly 5-fold. In the
case of PMA1 (86% preferred codons), such a reduction would
still leave thousands of misfolded proteins from this single gene
to burden the cell. Although that level of misfolding may
represent the ‘‘cost of doing business’’ for the cell, such an
argument assumes that mutant versions of PMA1 carried by
evolutionary competitors tolerate equivalent numbers of trans-
lation errors and generate similar costs. Because a protein’s
tolerance to substitutions can in some cases be significantly

altered with a single mutation (37), we suspect that this assump-
tion is rarely justified. Given variability in misfolding, natural
selection will then favor those mutants whose costs undercut
their competitors’.

A counterintuitive prediction of the translational robustness
hypothesis is that selection for proteins that are more tolerant to
amino acid change yields underlying genes that appear less
tolerant to nucleotide change (because they evolve slowly). How
is this result possible? Consider a hypothetical allele of PMA1 for
which only 0.1% (�1,000 molecules) of translated proteins
misfold because of errors. A nonsynonymous genetic mutation
yielding a functionally equivalent mutant protein that misfolds
5% of the time, producing �50,000 potentially toxic proteins,
would be evolutionarily disfavored relative to the wild type due
to increased misfolding costs without showing any functional
difference. Thus, the wild type, despite encoding a highly robust
protein that retains function after most mutations, will appear
mutationally fragile over evolutionary time. A striking example
of this robust-molecule�fragile-gene behavior may be found in
ribulose-1,5-bisphosphate carboxylase�oxygenase (Rubisco),
perhaps the most abundant protein on Earth and a rigidly
conserved, generally essential enzyme for which genetic studies
have nonetheless been hampered by the difficulty of finding
inactivating missense mutations (48).

How might translational robustness manifest itself biophysi-
cally? We can offer only a speculation. Because most substitu-
tions destabilize the native structure of a protein, modest
increases in thermodynamic stability broaden the spectrum of
substitutions a protein can tolerate before misfolding (37),
increasing fitness as long as function is not compromised.
Pressure for increased stability in highly expressed proteins
would restrict the set of evolutionarily viable sequences and slow
sequence evolution as a consequence.
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