
Engineering proteins that bind, move, make and break DNA
Cynthia H Collins�, Yohei Yokobayashiy, Daisuke Umenoy and
Frances H Arnoldyz

Recent protein engineering efforts have generated artificial

transcription factors that bind new target DNA sequences and

enzymes that modify DNA at new target sites. Zinc-finger-based

transcription factors are favored targets for design; important

technological advances in their construction and numerous

biotechnological applications have been reported. Other notable

advances include the generation of endonucleases and

recombinases with altered specificities, made by innovative

combinatorial and evolutionary protein engineering strategies.

An unexpectedly high tolerance to mutation in the active sites of

DNA polymerases is being exploited to engineer polymerases to

incorporate artificial nucleotides or to display other, nonnatural

activities.
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Abbreviations
bp base pair

CSR compartmentalized self-replication

dNTP deoxyribonucleotide triphosphate

PCR polymerase chain reaction

pol I polymerase I

rNTP ribonucleotide triphosphate

ZFP zinc-finger protein

Introduction
Proteins involved in DNA recognition, manipulation and

synthesis could provide a multitude of tools for studying

gene function, genetic engineering, molecular biology

and gene therapy. Engineered versions of these proteins

would have the potential to modulate the expression of

any gene of interest or to rearrange chromosomal DNA at

any site within a genome. The utility of proteins that

interact with DNA has been limited in many cases by

their target sequence specificities. Thus, significant

efforts have been made to engineer them to target alter-

nate DNA sequences. DNA polymerases with altered

fidelity and the ability to incorporate modified bases

would enable new technologies for gene amplification,

mutagenesis, and specific labeling. By engineering pro-

teins that bind and modify DNA, we can also gain insights

into the molecular mechanisms of maintenance, control

and modification of genetic information. This review

covers recent efforts to change the binding and catalytic

specificities of transcription factors, endonucleases,

recombinases, and DNA polymerases.

a-Helical DNA-binding proteins
The first report of engineering protein–DNA interactions

involved modification of the helix–turn–helix DNA-bind-

ing domain of the 434 repressor so that it recognized the

P22 operator [1]. Replacing the amino acids along the face

of the recognition helix that make contacts with DNA

with those from the corresponding positions in the P22

homolog created an engineered 434 repressor that bound

the P22 operator with affinity similar to that of the wild-

type P22 repressor for its cognate operator sequence. The

engineered repressor no longer bound the 434 operator.

Furthermore, heterodimers formed upon coexpression of

the wild-type and modified 434 repressors could bind

hybrid operators of 434 and P22 operator half-sites [2].

Single-chain proteins that are covalent dimers of the

DNA-binding domains from different transcription fac-

tors have also been shown to bind to hybrid operators

[3–9]. More recently, Liang et al. [10] constructed several

single-chain heterodimers using engineered 434 repressor

DNA-binding domains (identified in previous rational

design and selection experiments), which also bound

operators made up of half-sites bound by the individual

domains. To achieve high DNA-binding affinities (Kd ¼
10�11–10�10 M), the single-chain proteins developed by

Liang and colleagues require that the six base pair (bp)

sequence between the two half-sites contains mostly A and

T nucleotides. Apart from this study, there is little recent

published work on engineering helix–turn–helix DNA-

binding proteins. Thus, we cannot draw any conclusions

about the ease of changing their binding specificities.

Zinc-finger proteins
One of the most abundant protein motifs in eukaryotes,

the zinc-finger domain, has been the favored scaffold for

engineering novel DNA-binding proteins [11,12]. A

Cys2–His2 zinc finger consists of �30 amino acid residues

in a bba fold stabilized by the coordination of two

cysteine and two histidine residues to a zinc ion. Although

each zinc finger typically recognizes only three DNA

bases, multiple fingers can be linked in tandem so that

the resulting multifinger protein can recognize longer
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sequences. This modularity is attractive because it opens

the possibility of generating DNA-binding proteins of

arbitrary sequence specificities by fusing pre-made fin-

gers that each recognize any one of the 64 possible DNA

triplets. Although this simplest vision of combinatorial

zinc-finger protein (ZFP) design has only been partially

realized, significant advances in design strategies have

enabled the construction of artificial polydactyl ZFPs

with diverse sequence specificities.

Phage display has been by far the most widely used

technique to design (or discover) ZFPs with novel

sequence specificities. Typically, a set of amino acids

that contact the DNA in one finger of the multifinger

protein is randomly mutated, and the mutant fingers are

selected for binding to a desired DNA triplet, often with

negative selection against binding to other triplets. This

approach identified a set of zinc-finger domains that can

recognize the 16 possible combinations of 50-GNN-30

[13]. Extending this approach to zinc fingers that recog-

nize the remaining 48 triplets, however, has been com-

plicated by cross-subsite interactions in which DNA bases

are contacted by amino acid residues from neighboring

fingers. Dreier et al. [14] extended the repertoire of

custom, interchangeable fingers to recognize 50-ANN-30

triplets by eliminating a cross-subsite contact from the

finger fused to the C terminus. Other recent refinements

of this approach [15,16] further facilitate the ZFP design

process.

An alternative strategy for selecting artificial ZFPs using

phage display was recently described by Isalan and col-

leagues [17��] who constructed two libraries of three-

finger proteins based on transcription factor Zif268. Each

library contained half the wild-type Zif268 sequence (one

and a half fingers); the remaining half harbored rando-

mized amino acids that contact five of the nine bases

in the recognition sequence. The libraries were selected

in parallel for binding to double-stranded DNA the

sequence of which contained four bases recognized by

unmodified Zif268 and five bases of the target sequence.

The selected half-libraries were recombined in vitro and

further selected for binding to the full target DNA

sequence. This approach allows the selection of high-

affinity three-finger domains optimized for cross-subsite

interactions. It also allows high-throughput selection of

multiple ZFPs, because the half-libraries used for the

initial selection can be used universally. The authors

report that the entire selection process takes approx-

imately two weeks and is amenable to automation.

Although overshadowed by the intense activity in phage

display based selection of ZFPs, notable progress using a

rational design strategy was recently reported by Sera and

Uranga [18]. A nondegenerate recognition code table that

assigns specific amino acids at positions �1, 2, 3, and 6

(relative to the start of the recognition helix) of a zinc

finger to arbitrary 4 bp sequences was devised. The

antisense base of the fourth base pair is contacted by

the amino acid in position 2 of the first finger, whereas the

sense base (which is also the first base of the second,

overlapping 4 bp unit) is contacted by position 6 of the

second finger. Proposing that one can design artificial

ZFPs for arbitrary target sequences using the universal

table, Sera and Uranga tested ten three-finger proteins

targeted to different 10 bp sequences. Five exhibited

nanomolar affinities towards the desired sequences, and

the functional constructs were reported to discriminate

single base-pair changes. The results suggest a preference

for GC-rich sequences. With further refinement, this

approach may complement the existing combinatorial

design strategies, which still require substantial labor to

construct ZFPs with novel sequence specificities.

With these advances in design and the rapid accumula-

tion of knowledge regarding their DNA-binding proper-

ties, custom-designed ZFPs are now finding applications

as artificial transcription regulators. Genes of interest can

be activated or repressed in cells transfected with ZFPs

fused to appropriate effector domains. Recent progress

includes controlling gene expression in plants [19–22],

inhibiting virus replication by targeting critical regulatory

processes [23,24], and activating a gene involved in

angiogenesis in a mouse model [25]. Blancafort and

colleagues [26��] recently described the large-scale

screening of cells transfected with ZFP transcription

activator libraries for various phenotypic markers, demon-

strating a promising new tool for functional genomics.

These efforts have elucidated some important criteria for

successful in vivo applications of ZFP-based transcription

factors. It is critically important, for example, that the

target DNA sequence be within the chromatin-accessible

region. Liu et al. [27] clearly demonstrated this point in

their work which identified accessible regions of the

genomic DNA (which may differ among cell types) using

a DNase I hypersensitivity assay. It also appears that

ZFPs with six fingers function better than those with

three fingers in most cases, most likely due to stronger

binding and slower degradation.

Restriction enzymes
Restriction endonucleases are indispensable in today’s

molecular biology. Years of screening various microbial

sources have yielded hundreds of restriction enzymes that

are capable of recognizing specific DNA sequences four

to eight bases long and which cleave phosphodiester

bonds within or adjacent to the recognition site. Engi-

neered restriction enzymes that recognize altered or

expanded sequences are needed for applications in bio-

technology and medicine. However, modifying the

sequence specificities of restriction enzymes has proved

challenging. For example, a recent attempt by Lanio and

coworkers [28] to rationally expand the recognition

sequence of EcoRV based on available structural data
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yielded variants with altered selectivity, but not the pre-

dicted one. This group had previously shown that directed

evolution could yield variants that prefer AT-rich flanking

sites over GC-flanked sites [29]. The formidable chal-

lenges of rational engineering have led several researchers

to turn to combinatorial or evolutionary methods, involving

generation of random or directed mutant libraries coupled

with screening or selection. However, because most restric-

tion and other DNA-modifying enzymes do not exhibit the

modular separation of functions that, for example, the

ZFP-based transcription factors do, laboratory evolution

of these enzymes must face the serious challenge of retain-

ing catalytic activity while changing substrate sequence

specificity. Phage display is therefore not useful, unless it

can also select for catalysis [30�].

Samuelson and Xu [31] narrowed the substrate specificity

of the promiscuous restriction enzyme BstYI that cleaves

four DNA sequences 50-(A/G)GATC(C/T)-30 with similar

efficiency. BglII N4-cytosine methyltransferase was used

to protect 50-AGATCT-30 sites in the genome of host

bacteria transformed with random mutants of BstYI. Cells

containing BstYI mutants that retain activity toward the

other three substrate sequences do not survive, due to

damage to the genomic DNA. Mutant enzymes in the

surviving cells, however, may or may not have retained

activity toward 50-AGATCT-30 sites, which were pro-

tected by methylation. The mutants that survived the

initial selection were subsequently tested for their ability

to cleave the targeted 50-AGATCT-30 sequence using

in vivo and in vitro screens. With further recombination

and analysis of some functional mutations, a variant with

at least 12-fold greater catalytic efficiency towards the

targeted sequence was found. This particular variant,

however, lost a significant fraction of its specific activity.

Random mutagenesis coupled with well-designed gen-

etic assays allowed Seligman et al. [32] to identify several

mutations that altered the target sequence specificity of

homing endonuclease I-CreI. Homing endonucleases are

encoded in introns or expressed as inteins of certain genes

and are involved in the lateral gene transfer of their own

genetic elements to the alleles that lack the intervening

sequences [33]. The researchers incorporated the 22 bp

homing site and mutated analogs into F0 plasmids con-

taining kanamycin resistance and lacZ genes. I-CreI
mutants that cleaved the wild-type homing sequence

or its analogs would lose kanamycin resistance or yield

white colonies in media containing 5-bromo-4-chloro-3-

indolyl b-D-galactopyranoside (X-gal). Screening of mostly

single amino acid mutants of I-CreI at positions known to

make direct contacts with DNA bases identified several

with altered or relaxed sequence specificities.

A more drastic modification of restriction sequence spe-

cificity was achieved by swapping domains of two homing

endonucleases that naturally function as homodimers.

Chevalier and colleagues [34��] took advantage of the

fact that endonucleases of the LAGLIDADG family

share a characteristic dimerization interface mediated

by an a-helical pair to construct a hybrid enzyme stabi-

lized by this common interface. An artificial single-chain

enzyme that recognizes and cleaves hybrid DNA

sequences was made by fusing the N-terminal domain

of I-DmoI to a I-CreI monomer via a short peptide linker

(Figure 1). The hydrophobic interface of the chimeric

protein, E-DreI, was optimized for packing using an

automated computational algorithm. Sixteen candidates

were constructed and screened for solubility in vivo, and

three were overexpressed and purified for further bio-

chemical analysis in vitro. All three specifically recognized

and cleaved 23 bp hybrid DNA sequences derived from

the target sequences of the parental enzymes. The single

turnover rate (kcat) of one chimera was comparable with

that of the wild-type I-CreI, but the dissociation constant

(Kd) towards the target DNA was two orders of magnitude

higher than that of I-CreI towards its natural substrate

sequence.

Recombinases
Recombinases integrate, excise, invert or translocate

DNA based on the relative location and orientation of

a target DNA site, which is typically palindromic and has

a short spacer between half-sites. Used for site-specific

recombination of DNA in prokaryotes, yeast, flies and

mammals [35–37], their applications are currently limited

by their strict target-site specificities. Evolutionary meth-

ods have been used with considerable success to engineer

recombinases to target alternative DNA sites. Most

screening methods require the mutant recombinase to

excise a region of DNA that either places a reporter gene

downstream of a constitutive promoter or removes a

reporter gene that would be expressed in the absence

of recombinase activity. Changes in the expression of the

reporter gene are used to assess whether or not the mutant

recombinase is functional on the desired DNA target site

[38��,39�,40�,41].

The usual outcome of such experiments is relaxation of

the target-site specificity, unless additional screening

identifies those mutants that no longer function at the

wild-type recombination site. Santoro and Schultz [40�]
devised a method that allowed them to screen for Cre

mutants that recombined at an engineered target site or

that no longer recombined at the wild-type target site.

When they alternated screening for recognition of the

engineered site with screening for the inability to recog-

nize the wild-type site in subsequent generations, they

identified mutants with shifted DNA sequence specifi-

cities. When they did not specifically screen for loss of

wild-type function, they always found mutants that were

able to recombine at both the engineered and wild-type

DNA sites. Towards the same goal of shifting rather than

relaxing recombinase specificity, Buchholz and Stewart
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[42] placed the wild-type (loxP) and engineered (loxH)

recombination sites on a single plasmid spaced in such a

way that only one site could be recombined. Their

competition-based approach generated Cre mutants with

higher specificity for the engineered sequence. The

strategy used in the most recent work on Flp recombinase

includes a dual reporter system [38��,39�], which allows

both wild-type and mutant-site recombination to be

assessed simultaneously. This screen is based on the

removal of two reporter genes by the recombinase.

One reporter plasmid contains mutant recombination

sites flanking the lacZa gene, while a second reporter

contains the wild-type recombination sites flanking the

gene for red fluorescent protein (RFP). The authors

identified Flp mutants that were active only at the mutant

sites by selecting colonies expressing RFP but not b-

galactosidase.

Several groups have used two different stepwise

approaches to alter substrate specificity. In one approach,

the recognition of the palindromic repeats is changed first

followed by that of the directional spacer sequence [42].

In the second approach, mutants are progressively required

to act at a target site with more mutations [38��]. Such

stepwise strategies are likely to prove necessary as recom-

binases are engineered to recognize more drastically

altered target sequences. Interestingly, Voziyanov et al.
[38��] found that the amino acid substitutions found in

single target site mutants could not be recombined to

produce a Flp variant that was active on a target site

containing two mutations. Recombination with wild-type

Flp and another round of random mutagenesis and screen-

ing, however, identified Flp variants able to recombine at

the target sequence containing both mutations. One

mutant showed a clear preference for this site over the

wild-type and single-mutant sites.

Most efforts to change DNA sequence specificity have

focused on mutating amino acid residues that make direct

contact with the DNA. The identification of several non-

contact positions that play key roles in determining the

substrate specificity of Cre and Flp, however, indicates

that this may not be the best strategy [38��,41]. The

mutations shown to alter DNA target specificity of Flp

(Figure 2) are clearly not limited to those that make direct

contact with the DNA. Screening or selecting random

mutagenesis libraries may be a useful addition to future

efforts to engineer DNA sequence specificity.

DNA polymerases
DNA polymerases are integral to many molecular biology

techniques, including sequencing, labeling, modifica-

tion, amplification, detection, and random mutagenesis

of targeted DNA. Potential uses for DNA polymerases

also include the synthesis of DNA-based or DNA-like

polymeric materials. Needs for higher-performance and

Figure 2

Current Opinion in Biotechnology

Distribution of mutations that modulate DNA-binding specificity in Flp

recombinase [38��]. A monomer of Flp (blue) bound to DNA (yellow) is

shown. The amino acid residues identified in Flp variants with shifted

DNA-binding specificity are in red. The distribution of these amino acids

indicates that residues that do not make direct contact with DNA can

also modulate binding specificity. Therefore, when screening for proteins

with altered DNA-binding specificity, targeting only those residues that

make contact with the DNA may not always be the best search strategy.

(Figure 1 Legend) Rational design of an artificial, domain-swapped homing endonuclease [34��]. A chimeric homing endonuclease was made by

swapping the N-terminal domain of I-DmoI with a subunit of I-CreI. The initial chimera was insoluble. Computational methods were used to identify 16
constructs with redesigned interactions between the two domains. These constructs were screened using an in vivo protein folding assay in which the

chimeras were covalently linked to the LacZa peptide. Soluble E-DreI/lacZa constructs expressed in E. coli complemented the lacZo fragment to form

blue colonies; expression of insoluble E-DreI/lacZa constructs yielded white colonies. Three examples of this assay are shown: soluble I-CreI, an

insoluble E-DreI construct with clashing interface residues truncated, and a final E-DreI construct containing a redesigned interface. Biochemical

experiments showed that the selected E-DreI construct is both active and highly specific. The structure of E-DreI complexed to its DNA target site

was solved to 2.4 Å resolution. (Figure reproduced from [34��] with permission.)
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specialized polymerases have driven polymerase engi-

neering efforts focused on altering properties such as

processivity, activity, stability, and fidelity. Recent experi-

ments have overwhelmingly used combinatorial or evolu-

tionary approaches. Screens or selection systems for

polymerase engineering, like those used for engineering

recombinase and endonuclease activities, must be based

on enzyme function and not just on substrate binding.

Loeb and colleagues [43��] have conducted systematic

mutational analyses of Escherichia coli and Taq polymer-

ase I (pol I) to elucidate the molecular basis of their

replication fidelity and substrate tolerance. Their experi-

ments couple intensive mutagenesis of amino acid

residues that contact the incoming deoxynucleotide

triphosphates (dNTPs) with functional complementa-

tion of a polymerase-mutant E. coli [43��] or yeast strain

[44]. Sequence analysis of some of the thousands of

polymerase variants that are catalytically active has

shown that several highly conserved residues are, none-

theless, tolerant to mutation. Hundreds of active mutants

have been individually characterized to determine their

activity, fidelity, and substrate specificity. Various inter-

esting polymerases, such as error-prone E. coli pol I

variants [45] and a Taq pol I that preferentially incorpo-

rates ribonucleotide triphosphates (rNTPs; by approxi-

mately 1000-fold) [46] have been identified. This

approach, of intensive mutagenesis and genetic selection

with subsequent biochemical analysis, was also used to

analyze mouse polymerase b and resulted in the discov-

ery of a variant with approximately 25-fold increased

catalytic activity [47]. Although the active sites of

DNA polymerases are strictly conserved in nature, where

the selective pressure is apparently much more stringent

than the laboratory genetic complementation, mutations

in these sites can alter polymerase properties without

destroying catalytic ability.

Polymerases involved in DNA repair are attractive for

their broad substrate tolerance. Polymerase Z is known

for efficiently bypassing bulky lesions, such as cis-syn

thymine dimmers, and is one of the most error-prone of

the polymerases (�10% error frequency). Glick et al. [44]

developed a genetic selection, where active mutants

rescue a UV-sensitive yeast strain deficient in its DNA

repair system, to find functional polymerase Z variants.

From the functional variants, the authors isolated one

with fourfold improved activity [44] and several better

able to incorporate fluorescent dNTP analogs [48]. They

also isolated mutants with 15-fold higher replication

fidelity [49]. At present, these error-prone polymerases

are not very practical for biotechnology applications due

to their extremely slow polymerase activity (�10 000

times slower than typical pol Is). However, the unique

abilities of these enzymes to bypass damaged or irregular

sites have proven useful in combination with other poly-

merases [50].

The fact that DNA polymerases can amplify their own

genes establishes a link between genotype and phenotype,

which can be used in evolutionary engineering to identify

polymerases that are better self-replicators. Holliger and

coworkers [51��] used the technique of compartmenta-

lized self-replication (CSR). Polymerase variants are gen-

erated by in vitro mutagenesis and transformation into E.
coli cells. The mutant polymerases are then encapsulated

individually in droplets in a water/oil emulsion. In the

droplet compartments, which also contain the compo-

nents required for the polymerase chain reaction (PCR),

the polymerases amplify only their own genes; here,

improved function directly translates into gene amplifica-

tion. Three cycles of CSR, in which the compartmenta-

lized library pool was treated for a progressively longer

time at 998C (up to 15 min) before PCR, generated a Taq
polymerase I with a half-life 11-fold greater than that of

wild-type at 97.58C. CSR also identified a Taq pol I

variant with >130-fold increased resistance to heparin,

a general DNA polymerase inhibitor.

A novel application of phage display allowed Romesburg

and colleagues [30�] to select for polymerases that bind to

rNTPs and act as RNA polymerases. They created a

mutant library of Taq DNA pol I by fusion to the phage

pIII coat protein. The substrate DNA template/primer

duplexes were attached to other, adjacent pIII coat pro-

teins. Polymerases that could extend the attached oligo-

nucleotide primer by incorporating rNTP and biotinylated

rUTP were selectively recovered using streptavidin-coated

magnetic beads. Four rounds of screening isolated mutants

that incorporate rNTPs virtually as efficiently as the wild-

type enzyme incorporates dNTP substrates. Notably, each

rNTP was incorporated with similar efficiency, although

the wild-type Taq pol I and variants reported elsewhere [46]

show very poor incorporation of rUTP. None of these

polymerases, however, show good processivity.

DNA replication, the raison d’etre of DNA polymerases,

is an extraordinarily accurate process. The rate of somatic

mutation in mammalian cells is estimated to be about

10�10 per cell per duplication, and even very subtle

changes in polymerase properties could lead to genetic

instability. Nonetheless, the studies discussed here show

that polymerases are quite robust to mutation. While the

evolutionary implications of this fact remain elusive,

these enzymes have significant engineering potential.

Conclusions
Engineering the target specificities of proteins that bind

and modify DNA has proven challenging, but by no

means impossible. Innovative structure-based and evolu-

tionary design strategies have generated new transcrip-

tion factors, restriction enzymes, recombinases and

polymerases, and we can begin to envision engineering

proteins capable of binding and acting at any (accessible)

target DNA sequence. With these proteins will come the
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power to control the expression of any gene or to recom-

bine, excise or incorporate new DNA at specified sites

within a genome. Engineered DNA polymerases will lead

to improvements in such essential processes as PCR and

mutant library generation, as well as fundamentally new

applications. It is clear that we are just beginning to

examine and understand how ‘designable’ these proteins

are and to identify the most effective methods for engi-

neering them. Current work, however, indicates a level of

functional plasticity which, coupled with the multitude of

potential applications, promises significant advances in

the next few years.
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Erratum
Engineering proteins that bind, move, make and break DNA$

Cynthia H Collins, Yohei Yokobayashi, Daisuke Umeno and
Frances H Arnold
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In this article, published in the August 2003 issue of

Current Opinion in Biotechnology, the author’s discussion

of engineering a-helical DNA-binding domains failed to

note earlier reports of engineering protein–DNA interac-

tions [1–3]. In particular, two studies reported altering the

DNA-binding specificities of the Mnt repressor [1] and

catabolite activator protein [2], using genetic selection

methods, whereas a third described the substitution of an

entire a-helix to alter the DNA-binding specificity of the

434 repressor protein [3]. The authors regret this signif-

icant oversight.
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